C 公园长椅
SDUQD 旁边的滨海公园有 x 条长凳。第 i 个长凳上坐着 a_i 个人。这时候又有 y 个人将来到公园,他们将选择坐在某些公园中的长凳上,那么当这 y 个人坐下后,记k = 所有椅子上的人数的最大值,那么k可能的最大值mx和最小值mn分别是多少。
输入信息
第一行包含一个整数
x
(
1
<
=
x
<
=
100
)
x (1 <= x <= 100)
x(1<=x<=100) 表示公园中长椅的数目
第二行包含一个整数
y
(
1
<
=
y
<
=
1000
)
y (1 <= y <= 1000)
y(1<=y<=1000) 表示有 y 个人来到公园
接下来 x 个整数
a
i
(
1
<
=
a
i
<
=
100
)
a_i (1<=a_i<=100)
ai(1<=ai<=100),表示初始时公园长椅上坐着的人数
输出信息
输出 mn 和 mx
输入样例
3
7
1
6
1
输出样例
6 13
样例解释
最初三张椅子的人数分别为 1 6 1
接下来来了7个人。
可能出现的情况为{1 6 8},{1,7,7},…,{8,6,1}
相对应的k分别为8,7,…,8
其中,状态{1,13,1}的k = 13,为mx
状态{4,6,5}和状态{5,6,4}的k = 6,为mn
思路分析
首先将椅子上的人数排序。然后判断y人能否能把所有长椅上的人填满,即能否把所有长椅上的人数添加到初始人数最多的长椅。如果不能,则min=初始人数最多的长椅上的人数。如果能,则判断能对所有的椅子添加多少人。max=初始人数最多的长椅+y人。
代码
#include<iostream>
#include<algorithm>
using namespace std;
int x, y, bench[105],minans,maxans;
int main() {
cin >> x >> y;
for (int i = 0; i < x; i++) {
cin >> bench[i];
}
sort(bench, bench + x);
int temp = 0;
for (int i = 0; i < x; i++) {
temp += bench[x - 1] - bench[i];
}
if (temp >= y) minans = bench[x - 1];
else {
temp = y-temp;
temp = ceil((double)temp / x);
minans = temp + bench[x - 1];
}
maxans = bench[x - 1] + y;
cout << minans << " " << maxans << endl;
}