自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(55)
  • 资源 (1)
  • 收藏
  • 关注

原创 SVM目标函数的一些理解

写在前面学习SVM的对目标函数有些疑问,做了一些笔记。感谢ZKX同学提供的帮助,(PS:这篇博客可能会继续更新SVM我们的问题是设定一个超平面,去最大化样本点和这个超平面的距离,这个距离我们称之为Margin(间隔)。γ=min⁡iγ(i)\gamma=\min _{i} \gamma^{(i)}γ=imin​γ(i)函数间隔:这一点老师的PPT上并没有给出来,所以可能学习的时候有些混淆。γ^(i)=y(i)(ωTx(i)+b)\hat{\gamma}^{(i)}=y^{(i)}\lef

2020-11-27 21:02:37 26

原创 操作系统、计算机网络、计算机组成原理中同步和异步的概念

操作系统中同步在并发环境下,保持操作之间的偏序关系的行为。进程同步是指多个进程中发生的事件存在某种时序关系,必须协同动作共同完成一个任务。简单来讲同步是一种协作关系。同步亦称直接制约关系,它是指为完成某种任务而建立的两个或多个进程,这些进程因为需要在某些位置上协调它们的工作次序而等待、传递信息所产生的制约关系举几个例子:当两个进程运行时,进程A需要获取进程B此时运行到某一步的运行结果或者信息,才能进行自己的下一步工作,这个时候就得等待进程B与自己通信(发送某一个消息或信号),进程A再继续执行。这

2020-11-14 17:09:23 93

原创 Django 返回相对路径和绝对路径

imagefileddef user_directory_path(instance, filename): # file will be uploaded to MEDIA_ROOT/user_<id>/<filename> return 'user_{0}/{1}'.format(instance.user.id, filename)class MyModel(models.Model): image = models.FileField(uploa

2020-11-09 16:37:43 33

原创 在Linux上使用Nginx + Gunicorn部署Django工程

tmux + start djangotmuxtmux new -s session_name # 创建名为 session_name 的 tmux sessiontmux attach -t session_name # 重新回到叫做 session_name 的 tmux sessiontmux switch -t session_name # 切换到叫做 session_name 的 tmux sessiontmux list-sessions / tmux ls # 列出现有的所有 se

2020-11-09 16:36:39 46

原创 快速创建一个Django项目并进行相应配置

start a projectdjango 基本命令输入以下命令新建一个django projectdjango-admin startproject xxx新建一个apppython manage.py startapp polls创建超级用户python manage.py createsuperuser删除数据库rm -f db.sqlite3rm -r snippets/migrationspython manage.py makemigrations s

2020-11-09 16:34:43 160

原创 什么是光栅化?

光栅化首先,光栅化(Rasterize/rasteriztion)。这个词儿Adobe官方翻译成栅格化或者像素化。没错,就是把矢量图形转化成像素点儿的过程。我们屏幕上显示的画面都是由像素组成,而三维物体都是点线面构成的。要让点线面,变成能在屏幕上显示的像素,就需要Rasterize这个过程。就是从矢量的点线面的描述,变成像素的描述。如下图,这是一个放大了1200%的屏幕,前面是告诉计算机我有一个圆形,后面就是计算机把圆形转换成可以显示的像素点。这个过程就是Rasterize。参考链接如何理解 Open

2020-11-02 16:37:03 22

原创 最短寻道时间优先算法(SSTF)

文章目录SSTF问题描述:优点缺点思想:不是最优的例子:简单想:SSTF问题描述:SSTF算法选择调度处理的磁道是与当前磁头所在磁道距离最近的磁道,以使每次的寻找时间最短。当然,总是选择最小寻找时间并不能保证平均寻找时间最小,但是能提供比FCFS算法更好的性能。这种算法会产生“饥饿”现象。优点改善了磁盘平均服务时间。缺点优先级低的进程会发生“饥饿”现象。因为新进程请求到达,且其所要访问的磁道与磁头当前所在的磁道距离较近,必先优先满足。思想:本算法是对输入的磁道首先进行非递减排序,然后判断当前

2020-10-22 16:55:59 253 1

原创 图形学 glut 一些库的理解(持续更新)

glMatrixModeGL_PROJECTION 投影, GL_MODELVIEW 模型视图, GL_TEXTURE 纹理.glMatrixMode参考链接glShadeModelGL_SMOOTH会出现过渡效果,GL_FLAT则只是以指定的某一点的单一色绘制其他所有点glShadeModel参考链接

2020-10-12 19:41:12 34

原创 什么是简单路径?

Ans如果路径上的各顶点均不互相重复,称这样的路径为简单路径。如果路径上的第一个顶点与最后一个顶点重合,这样的路径称为回路(cycle)或环或圈。

2020-10-10 16:40:58 973

翻译 terminal shell tty console 的区别

A terminal is at the end of an electric wire, a shell is the home of a turtle, tty is a strange abbreviation and a console is a kind of cabinet.Well, etymologically speaking, anyway.In unix terminology, the short answer is thatterminal = tty = text inp

2020-09-25 09:25:08 28

原创 【操作系统】中断 异常 陷入 程序调用 之间的关系

前言:关于终端、异常、陷入三者之间的关系,网上有很多种分类,很多种解释。本文对三者关系的阐述根据山东大学杨兴强教授教授的操作系统时的思路整理。外部中断、异常、陷入:简单的来说,中断分为陷入、异常、外部中断(外部设备的中断)。即这三者统称为中断。其中陷入、异常又称为内部中断。外部中断:最容易被混淆,我们平常所说的中断既指大概念上的中断,又指的外部中断,这个要根据上下文推断。异常:CPU执行时出错,发出中断。是被动发生中断事件。陷入CPU主动跳转,比如断点调试和trap指令。使程序主动进入

2020-09-23 20:54:32 62

原创 Win 下 VSCode 配置 LaTeX format 自动格式化

前言网上关于 win 下 VSCode 配置 LaTeX 自动格式化博客较少,现搜集相关资料整理了一个较简单的教程步骤第一步:下载latexindentlatexindent下载地址第二步:解压缩文件放到自己常用目录第三步:在VSCode用户Json文件中添加如下:按F1,输入settings.json加入如下字段:"latex-workshop.latexindent.path": "D:\\LLL\\latex\\latexindent\\latexindent.exe",大

2020-09-21 19:28:29 110

原创 【数学建模】因子分析

因子分析模型因子分析和主成分分析的对比因子分析结果不是唯一的,主成分分析是唯一的主成分分析能做的因子分析都能做且因子分析更容易解释,因此因子分析更加常用。原理:uuu是均值参数估计(SPSS的使用)因子旋转的方法(更好解释因子含义)论文中使用的最多是最大方差法因子得分虽然和主成分分析很像,但并不一样因子分析限制更多例子:参数解释:根据碎石图确定因子个数小技巧:标准化后的符号:因子分析和主成分分析一样,不能用于综合评价:...

2020-09-19 00:01:05 61

原创 【数学建模】主成分分析

主成分分析问题的提出:降为的优点:例子:主成分分析的思想:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-w0nmmUc8-1600444818793)(C:\Users\Anadem\AppData\Roaming\Typora\typora-user-images\image-20200908211207191.png)]写在论文中的内容例题1:主成分简要分析例题2:误区,不能用于求得分:应用:聚类:...

2020-09-19 00:00:33 21

原创 【数学建模】预测模型 - 灰色模型

预测模型 - 灰色模型·前言:什么时候用灰度预测?预测题目的套路

2020-09-19 00:00:02 21

原创 【数学建模】时间序列分析:指数平滑和ARIMA模型

时间序列分析前言很多人认为index{ARIMA-ETS equivalences}ARIMA模型相较于指数平滑模型(ETS)更为一般化,这其实是一个较为普遍的错误认识。虽然线性指数平滑模型其实都是 ARIMA 模型的特例,但是非线性的指数平滑模型在 ARIMA 模型中并没有对应的部分。另一方面,也有很多 ARIMA 模型不包含指数平滑的部分。二者还有一个重要区别:所有指数平滑模型都是非平稳的,而有些ARIMA模型是平稳的。拥有季节性或者非衰减趋势的指数平滑模型拥有两个单位根(即它们需要进行两次差分

2020-09-18 23:57:33 537

原创 【数学建模】聚类模型 - DBSCAN

可视化网址聚类可视化网址DBSCAN和其他算法的区别K-means 和 系统算法是基于距离的DBSCAN是基于密度的优点可以发现任意形状的簇可以发现噪点总结:如果数据表现的很有形状就用DBSCAN其他情况用系统聚类K-means 论文上可以写的东西比较稀少...

2020-09-18 23:56:45 344

原创 【数学建模】聚类模型 - K-means & 系统(层次)算法

聚类和分类的区别聚类是不知道类别,自己分类分类是已知类别的聚类模型K-means聚类数据对象即样本聚类中心即重心PS:和我们初始化选择的中心有很大关系如何写在论文里因为算法步骤太长了,而且易被查重因为算法太长了,放流程图:优缺点:改进 K-means++算法K值这么定,量纲不一样怎么办?不需要指定K的算法:系统(层次)算法样本和样本直接的距离如何计算样本和样本之间的距离绝对值距离和欧式距离最常用绝对值距离更多的用于网状数据指标和指标之间的距离

2020-09-18 23:56:13 565

原创 【数学建模】分类模型

分类模型线性概率模型LPM的问题内生性问题二点分布求期望值域为0~1的函数一般用逻辑回归(因为简单这里又是概率论的内容了,下面要求极大似然估计预测结果很差怎么办?因为是预测性回归,不是解释性回归因此可以加入平方项、交互项问题:过拟合优化机器学习Fisher线性判别分析不同超平面选取的差异多分类问题:多分类从1开始分类,二分类从0开始分类以上两个方法均可以处理多分类问题注意过拟合问题...

2020-09-18 23:55:44 387

原创 【数学建模】数学规划模型 - 非线性规划 & 最大最小化问题

数学规划模型概述线性规划问题求解(MATLAB):代码:不是所有线性规划都有唯一解matlab 会返回其中的一个解如果出现 > 和 < 怎么办放松一下x≥0x \ge 0x≥0 变成 $ x > 0.0001$整数规划...

2020-09-18 23:55:12 594

原创 【数学建模】数学规划模型 - 线性规划 & 整数规划

非线性规划matlab 求解:因为非线性规划对初始值很敏感使用蒙特卡洛模拟方法(不是算法)获得初始值写作技巧:不同的算法有其名自的优缺点和适用情况,我们可以改变求解的算法来看求解的结量是否变好了。(这可以体现出稳健性,也是你的优点)最大最小化问题不就是二分吗?PS:不是二分,因为这个函数可以是非线性函数,二分函数必须得单调matlab求解...

2020-09-18 23:54:39 82

原创 【数学建模】蒙特卡洛模拟

我的总结:蒙特卡罗模型如果换一个名字就是计算机仿真,(计算机仿真现在的概念要大一点,可以理解为做大型工程的,两者不太一样,但在建模中类似)。个人感觉也可以说蒙特卡洛模型是模拟退火、蚁群等算法的原型。个人感觉这个经常放在论文的模型验证部分。前言:蒙特卡洛模拟实际上就是计算机仿真,它可以解决超级多的建模问题。公众号:数学建模学习交流。引例:布峰投针实验蒙特卡洛概述:蒙特卡洛是一个思想,而不是算法建模里就不去别计算机仿真和蒙特卡洛模拟了可以求规划问题可能会陷入局部最优应用

2020-09-18 23:54:00 555

原创 【数学建模】多元线性回归模型 - 序

回归系数的解释:什么时候取对数:这个规定充满主观性,但是是专家给的,就专业了四类模型回归系数解释:特殊变量解释(定性变量):定性变量 转化维 定量变量: 引入虚拟变量多分类虚拟变量:交互项:例子:分析幼儿奶粉数据:数据:只有三个定量指标,其它都是定性指标软件:技巧:比如商品量太多了,就不要做虚拟变量了拟合度R2R^2R2很低怎么办?:一般的时候我们更多的是解释性回归,不看重R2R^2R2了。预测性的我们用的别的模型(比如拟合来做)

2020-09-18 23:53:29 331

原创 【数学建模】多元线性回归模型 - 一元线性回归

什么是回归分析?相关性 ≠ 因果性自变量Y:自变量X:回归分析的用处:这里要注意,因为涉及到不同自变量的权重,所以一般要去量纲,不然没意义。回归分析的分类:多元线性回归:不同数据的处理:横截面数据:多元线性回归时间序列数据:最常用的是ARMA横截面数据:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NKvCz36V-1600444325643)(figures/多元线性回归模型/image-20200824222649255.

2020-09-18 23:52:24 128

原创 【数学建模】相关性分析 - 皮尔逊相关系数 & 斯皮尔曼相关系数

前言:皮尔逊Person相关系 (要求数据满足正态分布总体和样本总体皮尔逊Person相关系数一般说的相关系数就是皮尔逊相关系数就是概率论的知识消除量纲影响:总体:样本:意义:误区:用于衡量线性两个变量必须线性相关。不是线性相关函数,不一样总结:例题:MATLAB EXCEL SPSS都能做MATLABSPSSC(n,2) 的散点图可以用spss计算假设检验:概率论内容,考过的对皮尔逊相关系数进行假设检验

2020-09-18 23:51:36 356

原创 【数学建模】拟合算法

前言:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QIZ02T7r-1600347957753)(figures/拟合算法/image-20200822232315265.png)]拟合和插值的区别插值要经过所有点拟合不需要,只要这个曲线接近过所有点即可,只要保证误差足够小就可以。最小二乘(老生常谈了argargarg的意思是使我们函数最小的参数如何评价拟合的好坏选取多个函数求R2R^2R2做一个取舍,不是次方越高越好,目的是让函数简

2020-09-17 21:06:14 26

原创 【数学建模】插值算法

前言一维插值问题最常见的就是分段插值一般给n+1个点用n阶多项式拉格朗日插值法:缺陷:龙格现象因此用分段插值分段插值拉格朗日插值、牛顿插值牛顿插值和拉格朗日插值法都有龙格现象埃尔米特插值法(重要)最常用:分段三次埃尔米特插值和三次样条插值分段三次埃尔米特插值matlab 种 pchip 有现成函数三次样条插值:条件很苛刻对比:n维数据插值:小技巧:可以预测实例:...

2020-09-17 21:05:42 17

原创 【数学建模】模糊综合评价模型

模糊综合评价模型综合:多个指标,有多个权重概述(引子PS:量就是数字模糊集合经典集合:特征函数?模糊集合:用隶属度来描述元素在不在集合里。隶属函数充满随意性????,没有约定俗成的方法,只要合理就可以了。模糊集合的三种表示法(不重要Zadeh 这里只是一种计发,数学意义不强。这样放便积分第二种计法不方便表示无穷的集合论域$\mho $可以是无限个元素隶属函数的三种确定方法虽然隶属函数充满随意性,但还是有三种方法的模糊统计法(数模中用的很少

2020-09-17 21:04:47 141

原创 【数学建模】灰色关联分析

概述进行系统分析和综合评价。根据图形相似程度进行分析。(灰色系统是国内的人提出的,回归分析是国外人推荐的。)步骤步骤一:画统计图、进行一些简单的分析用回归分析的多重共线性问题?步骤二:确定分析序列步骤三:对数据进行预处理(去量纲、简化计算)步骤四:计算子序列和母序列的关联系数注意分辨系数ρ\rhoρ步骤五:计算灰色关联度步骤六:看谁关联度最大讨论:灰色关联分析用于综合评价AHP用于没有数据TOPSIS用于有数据灰色关联分析用于有数据TOP

2020-09-17 21:04:09 89

原创 【数学建模】熵权法

熵权法问题的提出:层次分析法主观性太强变异程度是方差(变化不大如何衡量信息量的大小(为什么是方差?信息熵:熵权法的步骤第一步:判断矩阵中是否有负数第二部:计算概率(感觉有点问题,但大家都这样第三步:计算信息熵,并归一化得到熵权背后原理熵权法和层次分析法熵权法:不一定太科学,值得商榷。层次分析法:专家赋权,太主观。总结:我觉得比赛可以俩都用,毕竟熵权法可以直接调用。解决综合评价的 层次分析法和TOPSIS熵权法可以用来给TOPSIS赋权...

2020-09-17 21:03:31 64

原创 【数学建模】TOPSIS-优劣解距离法

TOPSIS层次分析法的局限:决策层不能太多如果又数据已知,不能利用这些数据问题的提出:为什么要这样算:为什么制表 要 max min极大型(效益型)指标和极小型(成本型)指标:统一指标类型指标正向化(最常用)(PS:当然可以反过来标准化(消去量纲):如何计算:看似麻烦,其实很简单。就是每取出每一列的最大值和最小值形成单独的向量Z+Z^+Z+ 和Z−Z^-Z−然后每一行去用欧式距离算量Di+D_i^+Di+​ 和Di−D_i^-Di−​因此TOPSIS被称

2020-09-17 21:02:54 72

原创 【数学建模】排队论-层次分析

排队论这篇博客写的太好了,我就偷懒一点:数学建模之排队论排队论的一般模型:这里要注意,分析清除排队论种的排队顾客具体是谁。19年国赛C的顾客就是汽车司机,不是乘客。排队系统的组成和特征一般的排队过程都由输入过程、排队规则、服务过程三部分组成排队规则排队规则指到达排队系统的顾客按怎样的规则排队等待,可分为损失制,等待制和 混合制三种.损失制(消失制)。当顾客到达时,所有的服务台均被占用,顾客随即离去。等待制。当顾客到达时,所有的服务台均被占用,顾客就排队等待,直到接 受完服务才离去。例

2020-09-17 21:02:12 81

原创 【数学建模】2019国赛C

司守奎教授的讲解核心:这题不应该往排队论和综合评价上靠,而应该进行机理分析,整个讲解过程没有用到高大上的模型,都是一步一步推到出来的。第一问:问题核心,考虑出租车的经济效益:即考虑返回成本和等待时间返回成本:确定等待成本:排队等待的出租车数量可能乘坐出租车的乘客数量影响出租车效益的主要因素:(1)空载成本 (2) 载客收益:(3)乘客数:**小tick:**这个 r(t)r(t)r(t) 是随意取得,经验函数。N(t)N(t)N(t) 取什么也无所谓,80% 90

2020-09-17 21:01:31 98

原创 【计算机组成原理】微命令 微指令 微操作 微程序

前言复习机组的时候发现微操作、微命令、微指令、微程序、甚至控制信号这几个概念容易搞混。现在整理如下。总结 微命令 -> 微指令 -> 微程序 A -> B表示由A组成B控制部件通过控制线向执行部件发出各种控制命令,通常这种控制命令叫做微命令,是最小单位,组成微指令 。在机器的一个CPU周期中,一组实现一定操作功能的微命令的组合,构成一条微指令事实上一条机器指令的功能是由许多条微指令组成的序列来实现的。这个微指令序列通常叫做微程序。微操作:指令执行时必须完成的基本

2020-08-23 13:18:37 959

原创 如何深入浅出的理解 Kosaraju
原力计划

文章目录前言正题一些必要概念Kosaraju如和实现Why?如何理解问题前言今天想起来Kosaraju,网上关于这个算法的介绍比较少。(毕竟Tarjan太强了)。但是Tarjan和Kosaraju的复杂度都是O(n)O(n)O(n)的,Kosaraju的常数要大一点。(网上有的博客说kosaraju会卡爆栈,个人感觉不对,退化成链的情况Tarjan和Kosaraju都会一搜到底)。那为什么Kosaraju常数大还要学它呢,用Tarjan不好吗?因为它简单啊。毕竟Tarjan难理解是出了名的。正题

2020-06-28 00:35:08 152 1

原创 如何快速理解并记住 C 语言中的 typedef

假设有如下代码,你声明了一个函数指针funa:int *funa (int k);编译器就知道这一行声明了一个函数指针,其指向的函数接收一个int类型的参数,返回值为int。现在项目经理给编译器作者说,“我要有一个typedef的功能,要能给某个类型起别名。”编译器作者说:“你不早说,我代码都写完”。说归说,但还是得写,那就这样吧typedef int *Funa (int k);项目经理说:“这不就何之前一样了吗”编译器作者说:“谁让你不早说,这样我就能直接拿轮子了”项目经理说:“也

2020-06-27 16:31:52 65

原创 Django数据库操作 —— 干净的重置migration

前言随着项目需求的增加:Django的迁移文件越来越大,并且遇到models文件中如果使用了自定义存储字段。不再使用后删除会报错的情况。重置迁移文件后解决了上述问题。情景一:不需要原有的数据库数据首先删除数据库中的相关APP下的数据表然后删除APP下的migration模块中的所有 文件,除了init.py 文件执行下面的命令python manage.py makemigrationspython manage.py migrate情景二:不想要删除现有的数据库,只是想重新

2020-05-19 11:50:54 713 2

原创 c++ 模板中 class T 和 typename T 的区别

前言一直感觉template <class T>,今天查了一下。总结template<class T>和template<typename T>都可以用来定义函数模板和类模板,在使用上,他们俩没有本质的区别。在模板声明中,typename 可用作 class 的代替品,以声明类型模板形参和模板形参 (C++17 起)。在C++早期版本中,没有typen...

2020-04-18 22:50:58 182

原创 django 中优雅的使用 choice 字段

问题django中如何比较优雅的对元组进行标记分类。可使用choice字段choice字段# models.pyclass BookTagNum(object): OTHER = 1 SCIENCE = 2 SOCIAL_SCIENCES = 3 ECONOMIC = 4 COMPUTER = 5class BOOK(models.Model):...

2020-03-27 14:30:09 512

原创 【最小生成树】Kruskal - Prim - 堆优化的Prim

文章目录写在前面题目 C - 掌握魔法の东东 Iinputoutputsample inputSample Outputkruskaldijskra堆优化的dijstra写在前面整理了一份最小生成树算法板子题目 C - 掌握魔法の东东 I东东在老家农村无聊,想种田。农田有$ n$ 块,编号从 1~nnn。种田要灌氵众所周知东东是一个魔法师,他可以消耗一定的 MP 在一块田上施展魔法,使得...

2020-03-27 14:17:59 103

《最优化导论》第4版中英文PDF及题解.zip

本书是一本关于最优化技术的入门教材,全书共分为四部分。第一部分是预备知识。第二部分主要介绍无约束的优化问题,并介绍线性方程的求解方法、神经网络方法和全局搜索方法。第三部分介绍线性优化问题,包括线性优化问题的模型、单纯形法、对偶理论以及一些非单纯形法,简单介绍了整数线性优化问题。第四部分介绍有约束非线性优化问题,包括纯等式约束下和不等式约束下的优化问题的最优性条件、凸优化问题、有约束非线性优化问题的求解算法和多目标优化问题。 《最优化导论》第4版中英文PDF及题解。 这本书非常适合学习建模里的优化类问题,PDF中含有书签,可以复制!!!欢迎下载。

2020-08-16

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除