什么是本原根以及如何求一个数的本原根


首先先介绍用到的几个相关定义:

阶的定义

满足方程 a m ≡ 1   m o d   n {a}^{m}\equiv 1 \bmod n am1modn的最小正整数m,称为模n下a的阶,记为 o r d n ( a ) {ord}_{n}(a) ordn(a)

拓展定理:如果 o r d n ( a ) = t {ord}_{n}(a)=t ordn(a)=t,那么 o r d n ( a u ) = t ( t , u ) {ord}_{n}({a}^{u})=\frac{t}{(t,u)} ordn(au)=(t,u)t,其中 ( t , u ) (t,u) (t,u)是t和u的最大公因子。

欧拉函数

设n是一正整数,小于n且与n互素的正整数的个数称为n的欧拉函数,记为 φ ( n ) \varphi (n) φ(n)

1.若n是素数,则 φ ( n ) = n − 1 \varphi (n)=n-1 φ(n)=n1
2.若n是两个素数p和q的乘积,则 φ ( n ) = φ ( p ) × φ ( q ) = ( p − 1 ) ( q − 1 ) \varphi (n)=\varphi (p)×\varphi (q)=(p-1)(q-1) φ(n)=φ(p)×φ(q)=(p1)(q1)
3.若n有标准分解式 n = p 1 α 1 p 2 α 2 ⋯ p t α t n={p}_{1}^{{\alpha }_{1}}{p}_{2}^{{\alpha }_{2}}\cdots {p}_{t}^{{\alpha }_{t}} n=p1α1p2α2ptαt,则 φ ( n ) = n ( 1 − 1 p 1 ) ⋯ ( 1 − 1 p t ) \varphi (n)=n(1-\frac{1}{{p}_{1}})\cdots (1-\frac{1}{{p}_{t}}) φ(n)=n(1p11)(1pt1)

欧拉定理

若a和n互素,则 a φ ( n ) ≡ 1   m o d   n {\mathcal{a}}^{\varphi (n)}\equiv 1\bmod n aφ(n)1modn

根据阶的定义和欧拉定理易知:
o r d n ( a ) ∣ φ ( n ) {ord}_{n}(a)|\varphi (n) ordn(a)φ(n)(前者整除后者)

本原根的定义

如果 o r d n ( a ) = φ ( n ) {ord}_{n}(a)=\varphi (n) ordn(a)=φ(n),则称a为n的本原根。

如果a是n的本原根,则:
a , a 2 , ⋯   , a φ ( n ) a,{a}^{2},\cdots ,{a}^{\varphi (n)} a,a2,,aφ(n)
在模n下互不相同且都与n互素。

如果g是n的本原根,则有 o r d n ( g ) = φ ( n ) {ord}_{n}(g)=\varphi (n) ordn(g)=φ(n),则:
o r d n ( g u ) = φ ( n ) ( φ ( n ) , u ) {ord}_{n}({g}^{u})=\frac{\varphi (n)}{(\varphi (n),u)} ordn(gu)=(φ(n),u)φ(n)
当且仅当 ( φ ( n ) , u ) = 1 (\varphi (n),u)=1 (φ(n),u)=1时,即二者互质,上式的值为 φ ( n ) \varphi (n) φ(n),此时 g u {g}^{u} gu为n的本原根。

因此得到定理:
如果n有本原根g,那么n有 φ ( φ ( n ) ) \varphi(\varphi (n)) φ(φ(n))个本原根,这些本原根可以写成 g u {g}^{u} gu,u是1到 φ ( n ) \varphi (n) φ(n)中与 φ ( n ) \varphi (n) φ(n)互质的数。

例题详解

比如求25的所有本原根,首先:
25 = 5 2 25=5^{2} 25=52
φ ( 25 ) = 25 × ( 1 − 1 5 ) = 20 \varphi \left ( 25 \right ) =25\times \left ( 1-\frac{1}{5} \right )=20 φ(25)=25×(151)=20
20 = 2 2 × 5 20=2^{2}\times 5 20=22×5
φ ( 20 ) = 20 × ( 1 − 1 2 ) ( 1 − 1 5 ) = 8 \varphi \left ( 20 \right ) =20\times \left ( 1-\frac{1}{2} \right ) \left ( 1-\frac{1}{5} \right )=8 φ(20)=20×(121)(151)=8
所以25一共有8个本原根。

然后试着找到25的一个本原根,剩下的就能相应的计算得到。首先看与25互质的2是否是本原根,2的阶只能是 φ ( 25 ) \varphi \left ( 25 \right ) φ(25)的因子,即20的因子1,2,4,5,10,20。依次代入计算:

2 1 ≡ 2   m o d   25 2^{1} \equiv2\bmod 25 212mod25
2 2 ≡ 4   m o d   25 2^{2} \equiv4\bmod 25 224mod25
2 4 ≡ 16   m o d   25 2^{4} \equiv16\bmod 25 2416mod25
2 5 ≡ 7   m o d   25 2^{5} \equiv7\bmod 25 257mod25
2 10 ≡ 24   m o d   25 2^{10} \equiv24\bmod 25 21024mod25
2 20 ≡ 1   m o d   25 2^{20} \equiv1\bmod 25 2201mod25
根据欧拉定理, 2 φ ( 25 ) ≡ 1   m o d   25 2^{\varphi \left ( 25 \right )} \equiv1\bmod 25 2φ(25)1mod25
所以 o r d 25 ( 2 ) = φ ( 25 ) = 20 {ord}_{25}(2)=\varphi \left ( 25 \right )=20 ord25(2)=φ(25)=20,即2是25的一个本原根,所有的本原根可以表示为 2 u 2^{u} 2u,其中 u u u是1到20中与20互质的数,即1,3,7,9,11,13,17,19八个数,分别带入计算如下:
2 1 ≡ 2   m o d   25 2^{1} \equiv2\bmod 25 212mod25
2 3 ≡ 8   m o d   25 2^{3} \equiv8\bmod 25 238mod25
2 7 ≡ 3   m o d   25 2^{7} \equiv3\bmod 25 273mod25
2 9 ≡ 12   m o d   25 2^{9} \equiv12\bmod 25 2912mod25
2 11 ≡ 23   m o d   25 2^{11} \equiv23\bmod 25 21123mod25
2 13 ≡ 17   m o d   25 2^{13} \equiv17\bmod 25 21317mod25
2 17 ≡ 22   m o d   25 2^{17} \equiv22\bmod 25 21722mod25
2 19 ≡ 13   m o d   25 2^{19} \equiv13\bmod 25 21913mod25
所以模25的本原根为2,3,8,12,13,17,22,23。

  • 36
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值