origin2024-在柱状图内添加点线图(新老版本命令框发生了变动)

(1)绘制柱状图

(2)在图层空白处单击右键 新图层  右-Y轴(此步发生了变动,也是最重要的一步,因为按照旧版origin找不到命令框,之前的版本在 图 中如下图3)

图3 新老版本找到的界面

(3)插入-在当前图层添加绘图-点线图,如图5

图5 完成后的柱状图+点线图的最初版本,后续要进一步的调整使之美观。

### 使用 Origin2024 绘制多组柱状图 在科学研究和数据分析过程中,多组柱状图是一种非常有效的可视化工具,用于比较不同类别下的数值差异。通过Origin2024软件,能够方便快捷地创建这种类型的图表。 #### 准备工作 为了确保数据能被正确解析并呈现,在导入前需确认源文件格式适合Origin读取,比如Excel表格形式的数据集。每一列代表一类变量或者说是不同的样本群,而行则对应具体的观测值[^4]。 #### 创建基本柱形图 启动Origin程序后打开含有待分析资料的工作簿窗口。选中目标区域内的所有相关联项目(通常是连续几列),接着点击菜单栏上的Plot选项卡,找到其中的Column/Bars/Pie子项里的Bar Chart命令来初始化图形构建流程。 #### 添加误差线与标签 对于实验科学而言,除了显示平均数外还经常需要附加上标准偏差之类的统计量作为辅助说明。这一步骤可通过双击任意一根条棒进入编辑模式实现——选择Error Bar节点设置具体参数;另外也可以在此处修改颜色填充样式、边界宽度等外观属性以增强辨识度。 #### 处理多重分类情况 当面对更加复杂的场景时,如存在交叉因素影响结果分布,则可借助于Grouped Column Plot功能进一步细分层次结构。先按照前述办法生成初步视图之后再利用Layer Contents对话框调整内部布局逻辑关系,使得最终产物既美观又富含信息量。 ```python import numpy as np from matplotlib import pyplot as plt N = 5 # number of groups menMeans = (20, 35, 30, 35, 27) womenMeans = (25, 32, 34, 20, 25) ind = np.arange(N) # the x locations for the groups width = 0.35 # the width of the bars: can also be len(x) sequence fig, ax = plt.subplots() rects1 = ax.bar(ind - width/2, menMeans, width, color='SkyBlue', label='Men') rects2 = ax.bar(ind + width/2, womenMeans, width, color='IndianRed', label='Women') ax.set_ylabel('Scores') ax.set_title('Scores by group and gender') ax.set_xticks(ind) ax.legend() plt.show() ``` 此段Python代码仅作为一个简单的例子演示如何编程生成类似的对比直方图,并不适用于直接在Origin环境中执行。实际操作应参照官方指南或上述提及的功能路径完成相应配置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值