lintcode1042. 托普利兹矩阵

托普利兹矩阵”是指如果从左上角到右下角的同一条主斜线上每个元素都相等的矩阵.
给定一个M x N矩阵,判断是否为“托普利兹矩阵”.

样例
样例 1:

输入: matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]
输出: True
解释:
1234
5123
9512

在上述矩阵中,主斜线上元素分别为 "[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]", 每一条主斜线上元素都相等,所以返回`True`.


样例 2:

输入: matrix = [[1,2],[2,2]]
输出: False
解释:
主斜线 "[1, 2]" 有不同的元素.
注意事项
matrix 是一个二维整数数组.
matrix 的行列范围都为 [1, 20].
matrix[i][j] 的整数取值范围为[0, 99].
class Solution {
public:
    /**
     * @param matrix: the given matrix
     * @return: True if and only if the matrix is Toeplitz
     */
    bool isToeplitzMatrix(vector<vector<int>> &matrix) {
        // Write your code here
        for (int i = 0; i < matrix.size(); i++) {
            /* code */
            for(int j=0; j < matrix.size(); j++)
            {
                int tmp=matrix[i][j];
                int m=i;
                int n=j;
                while(m<matrix.size()&&n<matrix[m].size())
                {
                    if(matrix[m][n]!=tmp) return false;
                    m+=1;
                    n+=1;
                }
            }
        }
        return true;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值