给定一个整数数组 (下标由 0 到 n-1,其中 n 表示数组的规模,数值范围由 0 到 10000),以及一个 查询列表。对于每一个查询,将会给你一个整数,请你返回该数组中小于给定整数的元素的数量。
样例
样例 1:
输入: array =[1,2,7,8,5] queries =[1,8,5]
输出:[0,4,2]
样例 2:
输入: array =[3,4,5,8] queries =[2,4]
输出:[0,1]
挑战
可否用一下三种方法完成以上题目。
仅用循环方法
分类搜索 和 二进制搜索
构建 线段树 和 搜索
注意事项
在做此题前,最好先完成 线段树的构造 and 线段树查询 II 这两道题目。
思路:先排序,后进行二分查找即可
这里有一个函数:lower_bound( )和upper_bound( )
下列知识点原文来自:https://blog.csdn.net/qq_40160605/article/details/80150252
lower_bound( )和upper_bound( )都是利用二分查找的方法在一个排好序的数组中进行查找的。
在从小到大的排序数组中,
lower_bound( begin,end,num):从数组的begin位置到end-1位置二分查找第一个大于或等于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。
upper_bound( begin,end,num):从数组的begin位置到end-1位置二分查找第一个大于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。
在从大到小的排序数组中,重载lower_bound()和upper_bound()
lower_bound( begin,end,num,greater() ):从数组的begin位置到end-1位置二分查找第一个小于或等于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。
upper_bound( begin,end,num,greater() ):从数组的begin位置到end-1位置二分查找第一个小于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。
class Solution {
public:
/**
* @param A: An integer array
* @param queries: The query list
* @return: The number of element in the array that are smaller that the given integer
*/
vector<int> countOfSmallerNumber(vector<int> &A, vector<int> &queries) {
// write your code here
vector<int> res(queries.size(),0);
if(A.size()<=0) return res;
sort(A.begin(),A.end());
for (int i = 0; i < queries.size(); i++) {
res[i]=lower_bound(A.begin(),A.end(),queries[i])-A.begin();
}
return res;
}
};