给定一个整数数组(下标从 0 到 n-1, n 表示整个数组的规模),请找出该数组中的最长上升连续子序列。(最长上升连续子序列可以定义为从右到左或从左到右的序列。)
样例
样例 1:
输入:[5, 4, 2, 1, 3]
输出:4
解释:
给定 [5, 4, 2, 1, 3],其最长上升连续子序列(LICS)为 [5, 4, 2, 1],返回 4。
样例 2:
输入:[5, 1, 2, 3, 4]
输出:4
解释:
给定 [5, 1, 2, 3, 4],其最长上升连续子序列(LICS)为 [1, 2, 3, 4],返回 4。
挑战
使用 O(n) 时间和 O(1) 额外空间来解决
思路:用两个整数分别储存升序的个数和降序个数,再将个数赋予result,如果后续有大于result则替换即可
class Solution {
public:
/**
* @param A: An array of Integer
* @return: an integer
*/
int longestIncreasingContinuousSubsequence(vector<int> &A) {
// write your code here
int len=A.size();
int low=1;
int high=1;
int result=1;
if(!len) return 0;
else
{
for (int i = 0; i < len-1; i++) {
/* code */
if(A[i]<A[i+1])
{
high++;
low=1;
if(high>result) result=high;
}
else if(A[i]>A[i+1])
{
low++;
high=1;
if(low>result) result=low;
}
else {high=1;low=1;}
}
return result;
}
}
};```