lintcode 397. 最长上升连续子序列

给定一个整数数组(下标从 0 到 n-1, n 表示整个数组的规模),请找出该数组中的最长上升连续子序列。(最长上升连续子序列可以定义为从右到左或从左到右的序列。)

样例
样例 1:

输入:[5, 4, 2, 1, 3]
输出:4
解释:
给定 [5, 4, 2, 1, 3],其最长上升连续子序列(LICS)为 [5, 4, 2, 1],返回 4。
样例 2:

输入:[5, 1, 2, 3, 4]
输出:4
解释:
给定 [5, 1, 2, 3, 4],其最长上升连续子序列(LICS)为 [1, 2, 3, 4],返回 4。
挑战
使用 O(n) 时间和 O(1) 额外空间来解决

思路:用两个整数分别储存升序的个数和降序个数,再将个数赋予result,如果后续有大于result则替换即可

class Solution {
public:
    /**
     * @param A: An array of Integer
     * @return: an integer
     */
    int longestIncreasingContinuousSubsequence(vector<int> &A) {
        // write your code here
        int len=A.size();
        int low=1;
        int high=1;
        int result=1;
        if(!len) return 0;
        else 
        {
            for (int i = 0; i < len-1; i++) {
                /* code */
                if(A[i]<A[i+1])
                {
                    high++;
                    low=1;
                    if(high>result) result=high;
                }
                else if(A[i]>A[i+1])
                {
                    low++;
                    high=1;
                    if(low>result) result=low;
                }
                else {high=1;low=1;}
            }
            return result;
        }
    }
};```

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值