PyTorch学习笔记(9)–神经网络:线性层
本博文是PyTorch的学习笔记,第9次内容记录,主要介绍神经网络线性层的基本使用。
1.什么是线性层
线性层又叫全连接层,其中每个神经元与上一层所有神经元相连,一个简单的线性层如下图所示:
2.线性层
2.1线性激活函数相关参数
在PyTorch官网中,详细介绍了线性层的详细情况,线性函数为:torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)
,其中重要的3个参数in_features、out_features、bias说明如下:
- in_features:
每个输入(x)样本的特征的大小
- out_features:
每个输出(y)样本的特征的大小
- bias:
如果设置为False,则图层不会学习附加偏差。默认值是True,表示增加学习偏置。
在上图中,in_features=d,out_features=L。
2.2线性层应用举例1
现以CIFAR10图片数据集为数据集,线性层实现代码如下:
# coding :UTF-8
# 文件功能: 代码实现神经网络--线性层功能
# 开发人员: dpp
# 开发时间: 2021/8/17 10:28 下午
# 文件名称: nn_linear.py
# 开发工具: PyCharm
import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("CIFAR10", train=False,
transform=torchvision.transforms.ToTensor(),
download=True)
dataloader = DataLoader(dataset, batch_size=64)
class Test(nn.Module):
def __init__(self):
super(Test,