机器学习第二章 模型评估和选择

经验误差和过拟合
只需知道几个概念的问题,精度,误差(经验误差,泛化误差)
泛化误差一般是用来评估一个模型的好坏。
泛化性的下降一般体现在两个方面:overfitting(过拟合)underfitting(欠拟合)
评估方法分为三类:留出法,交叉验证法和自助法
留出法
直接把样本进行37分或28分(大部分的分类比例)
坏处:可能打破了原有的数据集的分布规律,使预测不准确
好处:对于金融预测(今天的预测未来的)那么这种方法就很适合
交叉验证法
把数据集分为m份每次拿出其中的一份来进行测试,另外的来进行预测
留一法
m=数据集数量
x 1 , x 2 . . . . x n − 1 x_1,x_2....x_{n-1} x1,x2....xn1 x n x_n xn
x 1 , x 2 . . . . x n x n − 1 x_1,x_2....x_nx_{n-1} x1,x2....xnxn1

x 2 , x 3 . . . . x n , x 1 x_2,x_3....x_n,x_1 x2,x3....xn,x1
坏处:计算量大,耗时耗力
自助法
D:{1 2 3 4 5 6 7 }
D’:{1 1 3 2 3 5 6 1}
D-D’:{4,7}
则D‘为训练集,D-D’为测试集

验证集:用训练集训练数据,用验证集确定参数,再用训练集训练数据,最后差不多了就用测试集测试数据
回归方差
基本求方差的式子E(f,D)数据集D用模型f的误差
E ( f , D ) = 1 m ∑ i = 1 m f ( x i − y i ) 2 E(f,D)=\frac{1}{m}\sum_{i=1}^{m}f(x_i-y_i)^2 E(f,D)=m1i=1mf(xiyi)2
加上一个加权后
E ( f , D ) = ∫ x − D ( f ( x ) − y ) p ( x ) d ( x ) E(f,D)=\int_{x-D}(f(x)-y)p(x)d(x) E(f,D)=xD(f(x)y)p(x)d(x)
查准率和查全率
确定最优阈值
1.使用平衡点(P=R)
2.F1度量
1 F = 1 P + 1 R \frac{1}{F}=\frac{1}{P}+\frac{1}{R} F1=P1+R1
本质:预测正的正确样本数占比
3.Fb度量
1 F b = 1 1 + b 2 ( 1 P + b 2 R ) \frac{1}{F_b}=\frac{1}{1+b^2}(\frac{1}{P}+\frac{b^2}{R}) Fb1=1+b21(P1+Rb2)
本质:加权后的预测正的正确样本数占比
以上是同一个数据集判别一个模型的好坏的标准,下面是同一个数据集判别不同模型好坏的标准
P-R曲线
1 完全包含的那条曲线代表的模型好过被包含的曲线代表的模型
2 若两条曲线交叉,则
1)求面积(不太好求)
2)看F1
3)看Fb
ROC曲线
如果说P-R是横向和纵向之比的话,ROC就是两个横向之比。前者和阈值的关系是反向,后者是同乡
其面积为AUC
难点:如何求rank-loss,以及AUC与rank-loss之间的关系
举例说明,并配上图像即可知 AUC=1-rank-loss
代价敏感曲线
目的:不同p(正例所占的比例)导致的归一化代价的不同。寻找模型的最优阈值
步骤:

  1. 定义阈值
  2. 找到m+和m-数量
  3. 定义p
  4. 求出FP FN TP TN
  5. 求出FNR FPR
  6. 求出横坐标 p c o s t 01 p c o s t 01 + ( 1 − p ) c o s t 10 \frac{pcost_{01}}{pcost_{01}+(1-p)cost_{10}} pcost01+(1p)cost10pcost01
  7. 求出纵坐标 F N R ∗ p ∗ c o s t 01 + F P R ∗ ( 1 − p ) c o s t 10 p c o s t 01 + ( 1 − p ) c o s t 10 \frac{FNR*p*cost_{01}+FPR*(1-p)cost_{10}}{pcost_{01}+(1-p)cost_{10}} pcost01+(1p)cost10FNRpcost01+FPR(1p)cost10

在这里插入图片描述

上图中横坐标和纵坐标都是函数,横坐标是p的函数,之所以不直接用p,可能是因为以p为横坐标的图像是曲线,面积不太好求,见下
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值