java学习笔记(七)
java部分:
继承:
关键词为extends,java中无法多重继承,一个子类只有一个父类,父类可以有多个子类,但是子类和子类没有关系,只是继承了同一个父类.java可以连环继承,子类继承了父类的父类(所有类都继承了 Object类,实现了13个方法).
加载子类之前会优先加载父类,new 子类对象之前会先new 父类对象.父类只有有参构造器没有无参构造器时(无参构造器在有有参构造器时不会默认生成),子类调用默认构造方法会报错(子类调用构造方法默认调用父类的无参构造方法).简而言之,要么自己用super(参数)调用有参构造方法,要么就给父类写无参构造方法(建议无论何种情况都先写一个无参构造方法).
抽象:
关键词 abstract.分成抽象方法和抽象类.
-
抽象方法只能在抽象类中实现,抽象方法并没有方法体,只是为了统一子类中都实现该抽象方法.
-
实体类如果继承了抽象类,必须重写抽象类中所有的抽象方法.
-
抽象类不能new对象,但是有构造方法,用于给子类的对象构造时使用.
-
抽象类可以有非抽象的方法,可以有成员变量(不存在抽象成员变量)
访问修饰符:
最大访问权限范围:public(不同包下其他类中就能直接使用)>protected(其他包中的有父子类关系,import导入就能使用)>(default,默认不写)(同一个包下面,没有关系的类中)>private(只能在本类中)
private和protected是不能用来修饰类的,只能默认或者public.
javaBean规范:
类名符合驼峰命名法,有一个无参构造器,属性私有化并且提供public的get/set方法.
算法部分:
平衡二叉树:
输入一棵二叉树,判断该二叉树是否是平衡二叉树。 在这里,我们只需要考虑其平衡性,不需要考虑其是不是排序二叉树.平衡二叉树(Balanced Binary Tree),具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
题目已经给了提示,不用考虑是不是排序二叉树,那么可以直接改造二叉树,用深度优先搜索算法,二叉树的value就是它的深度,如果左右两个节点的差值大于1那就说明已经不平衡了.
public class Solution {
static Boolean balance;
public boolean IsBalanced_Solution(TreeNode root) {
balance =true;
if (root == null){
return true;
}
if (root.left == null && root.right == null){
return true;
}
if (root.left == null || root.right == null){
return false;
}
FindRoot(root);
return balance;
}
public static void FindRoot(TreeNode root) {
if (root.left == null && root.right == null) {
root.val = 1;
return;
} else {
if (root.left == null) {
FindRoot(root.right);
root.val = root.right.val+1;
return;
} else if (root.right == null) {
FindRoot(root.left);
root.val = root.left.val+1;
return;
} else {
FindRoot(root.left);
FindRoot(root.right);
if (Math.abs(root.left.val-root.right.val)>=2) {balance=false;}
root.val = Math.max(root.left.val, root.right.val)+1;
}
}
}
}
最长回文子串:
对于一个字符串,请设计一个高效算法,计算其中最长回文子串的长度。 给定字符串A以及它的长度n,请返回最长回文子串的长度。
我的想法是去找那个回文点,然后向两边扩散,到两边的字符不同时就是该字符串的长度,然后和max里面原来的长度比较之后再保存起来,最后输出的就是max.
public int getLongestPalindrome(String A, int n) {
char[] ch = A.toCharArray();
int temp = 2, max = 0;
int i, j, flag = 0;
if (ch[0] == ch[1]) {
max = 2;
}
while (temp < n) {
if (ch[temp] == ch[temp - 1]) {
i = temp + 1;
j = temp - 2;
flag = 2;
while (j >= 0 && i < n) {
if (ch[i] != ch[j]) {
flag = flag - 2;
j = -1;
}
i++;
j--;
flag = flag + 2;
}
max = Math.max(max, flag);
}
if (ch[temp] == ch[temp - 2]) {
i = temp + 1;
j = temp - 3;
flag = 3;
while (j >= 0 && i < n) {
if (ch[i] != ch[j]) {
flag = flag - 2;
j = -1;
}
i++;
j--;
flag = flag + 2;
}
max = Math.max(max, flag);
}
temp++;
}
return max;
}