【PAT甲级复习】 专题复习九:数学相关

专题复习九(9.10):数学相关

1 最大公约数与最小公倍数

最大公约数的代码:

int gcd(int a, int b){
    if(b == 0) return a;
    else return gcd(b, a%b);
}

lcm(a,b) = a / gcd(a,b) * b;	//最小公倍数

2 分数的表示

除法需要额外注意,如果读入的除数是0,需要直接特判输出。

struct Fraction{
    int up, down;
};

Fraction reduction(Fraction result){
    if(result.down < 0){
        result.up = -result.up;
        result.down = -result.down;
    }
    if(result.up == 0){
        result.down = 1;
    }
    else{
        int d = gcd(abs(result.up), abs(result.down));
        result.up /= d;
        result.down /= d;
    }
    return result;    
}

3 素数

3.1 判断素数
bool isPrime(int n){
    if(n <= 1) return false;
    int sqr = (int)sqrt(1.0* n);
    for(int i=2; i<=sqr; i++){
        if(n % 2 == 0) return false;
    }
    return true;
}
3.2 筛法获取素数表
const int MAXN = 101;   //表长
int prime[MAXN], pNum = 0;  //prime存放所有素数,pNum存放素数个数
bool notPrime[MAXN] = {0};  //初始假设都是素数
void Find_Prime(){
    for(int i=2; i<MAXN; i++){
        if(notPrime[i] == false){
            prime[pNum++] = i;
            for(int j = i+i; j<MAXN; j += i){
                notPrime[j] = true;
            }
        }
    }
}

4 质因子分解

由于1本身不是素数,因此它没有质因子。由于每个质因子可以不止出现一次,可以定义结构体factor,用来存放质因子及其个数。

质因子分解的思路:

  1. 枚举1~sqrt(n)范围内的所有质因子p,判断p是否是n的因子。如果是就给fac数组增加质因子p,并初始化其个数为0。然后,只要p还是n的因子,就让n不断除以p,每次操作令p的个数加一;如果不是直接跳过。
  2. 如果以上步骤后n仍然大于1,说明有一个大于sqrt(n)的质因子(有可能是n本身),这时只需要把剩下的n加入fac数组,并设置其个数为1。
struct factor{
    int x, cnt;
}fac[10];

int num = 0;
int sqr = sqrt(1.0 * n);
for(int i=0; i<pNum && prime[i] <= sqr; i++){
    if(n % prime[i] == 0){
        fac[num].x = prime[i];
        fac[num].cnt = 0;
        while(n % prime[i] == 0){
            n /= prime[i];
            fac[num].cnt++;
        }
        num++;
    }
    if(n == 1) break;
}
if(n != 1){
    fac[num].x = n;
    fac[num++].cnt = 1;    
}

如果要求一个正整数N的因子个数,只需要对其进行质因子分解,得到各质因子的pi分别为e1,e2,e3…ek,则N的因子个数就是(e1 + 1)*(e2 + 1)…

5 大整数运算

高精度A + B

struct bign{
    int d[1000];
    int len;
    bign(){
        fill(d, d+1000, 0);
        len = 0;
    }
};

bign change(string str){
    bign a;
    a.len = str.size();
    for(int i=0; i<a.len; i++){
        a.d[i] = str[a.len - i - 1] - '0';
    }
    return a;
}

bign Add(bign a, bign b){
    int carry = 0;
    bign c;
    for(int i=0; i<a.len || i<b.len; i++){
        int temp = a.d[i] + b.d[i] + carry;
        c.d[c.len++] = temp % 10;
        carry = temp / 10;
    }
    if(carry != 0){
        c.d[c.len++] = carry;
    }
    return c;
}

void printBign(bign a){
    for(int i=a.len-1; i>=0; i--){
        printf("%d",a.d[i]);
    }
}

高精度A - B,先比较A和B的大小,如果A比B小,就交换A和B,计算出结果后加上一个负号即可。

int compare(bign a, bign b){
    if(a.len > b.len) return 1;
    else if(a.len < b.len) return -1;
    else{
        for(int i=a.len-1; i>=0; i--){
            if(a.d[i] > b.d[i]) return 1;
            else if(a.d[i] < b.d[i]) return -1;
        }
        return 0;
    }
}

bign Sub(bign a, bign b){
    bign c;
    for(int i=0; i<a.len || i<b.len; i++){
        if(a.d[i] < b.d[i]){
            a.d[i+1]--;
            a.d[i] += 10;
        } 
        c.d[c.len++] = a.d[i] - b.d[i];
    }
    while(c.len >= 2 && c.d[c.len - 1] == 0){
        c.len--;
    }
    return c;
}

高精度A × 低精度B:

bign multi(bign a, int b){
    bign c;
    int carry = 0;
    for(int i=0; i<a.len; i++){
        int temp = a.d[i] * b + carry;
        c.d[c.len++] = temp % 10;
        carry = temp / 10;
    }
    while(carry != 0){
        c.d[c.len++] = carry % 10;
        carry = carry / 10;
    }
    return c;
}

高精度A ÷ 低精度B:

bign divide(bign a, int b, int &r){
    bign c;
    c.len = a.len;
    for(int i=a.len-1; i>=0; i--){
        r = r*10 + a.d[i];
        if(r < b) c.d[i] = 0;
        else{
            c.d[i] = r / b;
            r = r % b;
        }
    }
    while(c.len >= 2 && c.d[c.len - 1] == 0){
        c.len--;
    }
    return c;
}

6 组合数

6.1 求n!中有多少个质因子p

O(logN)的算法:cal(n,5)即为n!末尾0的个数。

int cal(int n, int p){
    int ans = 0;
    while(n){
        ans += n / p;
        n /= p;
    }
    return ans;
}
6.2 组合数的计算

递归计算,复杂度O(n2);

long long res[67][67] = {0};
long long C(long long n, long long m){
    if(m == 0 || n == m) return 1;
    if(res[n][m] != 0) return res[n][m];
    return res[n][m] = C(n-1, m) + C(n-1, m-1);
}

定义变形计算,复杂度O(m):

long long C(long long n, long long m){
    long long ans = 1;
    for(long long i=1; i<=m; i++){
        ans = ans * (n - m + i) / i;
    }
    return ans;
}

计算C(n,m)%p,假设两倍的p不会超过int,可以支持m<=n<=1000, p<=10的9次方

int res[1010][1010] = {0};
int C(int n, int m){
    if(m == 0 || n == m) return 1;
    if(res[n][m] != 0) return res[n][m];
    return res[n][m] = (C(n-1, m) + C(n-1, m-1)) % p;
}

如果要支持long long级别的m,n,用lucas算法

int Lucas(int n, int m){
    if(m == 0) return 1;
    return C(n%p, m%p) * Lucas(n/p, m/p) % p;
}
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值