数据库知识点总结(一)
数据库系统原理
一、事务
1.概念
事务指的是满足 ACID 特性的一组操作,可以通过 Commit 提交一个事务,也可以使用 Rollback 进行回滚。
2.ACID
(1)原子性(Atomicity)
事务被视为不可分割的最小单元,事务的所有操作要么全部提交成功,要么全部失败回滚。回滚可以用回滚日志来实现,回滚日志记录着事务所执行的修改操作,在回滚时反向执行这些修改操作即可。
(2)一致性(Consistency)
数据库在事务执行前后都保持一致性状态。在一致性状态下,所有事务对一个数据的读取结果都是相同的。
(3)隔离性(Isolation)
多个事务并发访问时,事务之间是隔离的,一个事务不应该影响其它事务运行效果。在并发环境中,当不同的事务同时操纵相同的数据时,每个事务都有各自的完整数据空间。由并发事务所做的修改必须与任何其他并发事务所做的修改隔离。事务查看数据更新时,数据所处的状态要么是另一事务修改它之前的状态,要么是另一事务修改它之后的状态,事务不会查看到中间状态的数据。
完全的隔离性是不现实的,完全的隔离性要求数据库同一时间只执行一条事务(串行),这样会严重影响性能。一般选择较弱的隔离级别,如读未提交(容易读到脏数据)、读已提交(容易引起幻读)和可重复读(容易引起不可重复读,即同一条数据前后读取不一致)等。
(4)持久性(Durability)
一旦事务提交,则其所做的修改将会永远保存到数据库中。即使系统发生崩溃,事务执行的结果也不能丢失。使用重做日志来保证持久性。
总结:
- 只有满足一致性,事务的执行结果才是正确的;
- 在无并发的情况下,事务串行执行,隔离性一定能够满足。此时只要能满足原子性,就一定能满足一致性;
- 在并发的情况下,多个事务并行执行,事务不仅要满足原子性,还需要满足隔离性,才能满足一致性;
- 事务满足持久化是为了能应对数据库崩溃的情况。
二、并发一致性问题
在并发环境下,事务的隔离性很难保证,因此会出现很多并发一致性问题。
1. 丢失修改
T1和T2两个事务都对一个数据进行修改,T1先修改,T2随后修改,T2的修改覆盖了 T1的修改。
2. 读脏数据
T1 修改一个数据,T2 随后读取这个数据。如果 T1 撤销了这次修改,那么 T2 读取的数据是脏数据。
3. 幻影读
T1 读取某个范围的数据,T2 在这个范围内插入新的数据,T1 再次读取这个范围的数据,此时读取的结果和和第一次读取的结果不同。
4. 不可重复读
T2 读取一个数据,T1 对该数据做了修改。如果 T2 再次读取这个数据,此时读取的结果和第一次读取的结果不同。
产生并发不一致性问题主要原因是破坏了事务的隔离性,解决方法是通过并发控制来保证隔离性。并发控制可以通过封锁来实现,但是封锁操作需要用户自己控制,相当复杂。数据库管理系统提供了事务的隔离级别,让用户以一种更轻松的方式处理并发一致性问题。
三、封锁
1. 封锁粒度
MySQL中提供了两种封锁粒度:行级锁 和 表级锁。
尽可能只锁定需要修改的那部分数据而不是全部资源 — 锁定的数据量越小,发生锁争用可能性降低,系统并发程度提高
锁的各种操作如获取锁、释放锁以及检查锁状态等消耗资源 — 封锁粒度越小,系统开销越大
— 封锁粒度的选择需要在 锁开销 和 并发程度 之间做权衡
2. 封锁类型
(1) 读写锁
- 写锁/排它锁(Exclusive),简写为 X 锁。
- 读锁/共享锁(Shared),简写为 S 锁。
有以下两条规定:
- 一个事务对数据对象A加了X锁,就可以对A进行读取和更新。加锁期间其他事务不能对A加任何锁;
- 一个事务对数据对象A加了S锁,可以对A进行读取操作,但不能进行更新操作。加锁期间其它事务能对A加S锁,但不能加X锁。
(2) 意向锁(Intention Locks)
实现表锁和行锁的共存。意向锁在原来的 X/S 锁之上引入了 IX/IS,IX/IS 都是表锁,用来表示一个事务想要在表中的某个数据行上加 X 锁或 S锁。有以下两个规定:
- 一个事务在获得某个数据行对象的 S 锁之前,必须先获得表的 IS 锁或者更强的锁;
- 一个事务在获得某个数据行对象的 X 锁之前,必须先获得表的 IX 锁。
在存在行级锁和表级锁的情况下,事务T想要对表A加X锁,就需要先检测是否有其它事务对表A或者表A中的任意一行加了锁,那么就需要对表A的每一行都检测一次,这是非常耗时的。
通过引入意向锁,事务T想要对表A加X锁,只需要先检测是否有其它事务对表A加了 X/IX/S/IS 锁,如果加了就表示有其它事务正在使用这个表或者表中某一行的锁,因此事务T加X锁失败。
各种锁的兼容关系:
注意:任意 IS/IX 锁之间都是兼容的,因为它们只是表示想要对表加锁,而不是真正加锁;S锁只与S锁和IS锁兼容,也就是说事务T想要对数据行加S锁,其它事务可以已经获得对表或者表中的行的S 锁。
3. 封锁协议
(1) 三级封锁协议
-
一级封锁协议
事务T要修改数据A时必须加X锁,直到T结束才释放锁。— 解决丢失修改问题.,因为不会同时有两个事务对同一个数据进行修改,事务的修改就不会被覆盖。 -
二级封锁协议
在一级的基础上,要求读取数据A时必须加S锁,读取完马上释放S锁。— 解决读脏数据问题,因为如果一个事务在对数据A进行修改,根据1级封锁协议,会加X锁,那么就不能再加S锁了,也就是不会读入数据。 -
三级封锁协议
在二级的基础上,要求读取数据 A 时必须加S锁,直到事务结束了才能释放S锁。— 解决不可重复读的问题,因为读A时,其它事务不能对A加X锁,从而避免了在读的期间数据发生改变。
(2) 两段锁协议
加锁和解锁分为两个阶段进行。
可串行化调度:通过并发控制,使得并发执行的事务结果与某个串行执行的事务结果相同。
事务遵循两段锁协议是保证可串行化调度的充分条件。例如以下操作满足两段锁协议,它是可串行化调度。
lock-x(A)…lock-s(B)…lock-s©…unlock(A)…unlock©…unlock(B)
但不是必要条件,例如以下操作不满足两段锁协议,但是它还是可串行化调度。
lock-x(A)…unlock(A)…lock-s(B)…unlock(B)…lock-s©…unlock©
4. MySQL隐式与显示锁定
MySQL的InnoDB存储引擎采用两段锁协议,会根据隔离级别在需要的时候自动加锁,并且所有的锁都是在同一时刻被释放,这被称为隐式锁定。
InnoDB也可以使用特定的语句进行显示锁定:
SELECT … LOCK In SHARE MODE;
SELECT … FOR UPDATE;
四、隔离级别
1. 未提交读(READ UNCOMMITTED)
事务中的修改,即使没有提交,对其它事务也是可见的。
2. 未提交读(提交读(READ COMMITTED)
一个事务只能读取已经提交的事务所做的修改。换句话说,一个事务所做的修改在提交之前对其它事务是不可见的。
3. 可重复读(REPEATABLE READ)
保证在同一个事务中多次读取同样数据的结果是一样的。
4. 可串行化(SERIALIZABLE)
强制事务串行执行。需要加锁实现,而其它隔离级别通常不需要。
五、多版本并发控制
多版本并发控制(Multi-Version Concurrency Control, MVCC)是 MySQL 的 InnoDB 存储引擎实现隔离级别的一种
具体方式,用于实现提交读和可重复读这两种隔离级别。而未提交读隔离级别总是读取最新的数据行,无需使用
MVCC。可串行化隔离级别需要对所有读取的行都加锁,单纯使用 MVCC 无法实现。
1. 版本号
- 系统版本号:是一个递增的数字,每开始一个新的事务,系统版本号就会自动递增。
- 事务版本号:事务开始时的系统版本号。
2. 隐藏的列
MVCC 在每行记录后面都保存着两个隐藏的列,用来存储两个版本号:
- 创建版本号:指示创建一个数据行的快照时的系统版本号。- 行的创建时间
- 删除版本号:如果该快照的删除版本号大于当前事务版本号表示该快照有效,否则表示该快照已经被删除了。- 行的删除时间
3. Undo日志
MVCC 使用到的快照存储在Undo日志中,该日志通过回滚指针把一个数据行(Record)的所有快照连接起来。
4. 实现过程
以下实现过程针对可重复读隔离级别。
当开始一个事务时,该事务的版本号肯定大于当前所有数据行快照的创建版本号,理解这一点很关键。数据行快照的
创建版本号是创建数据行快照时的系统版本号,系统版本号随着创建事务而递增,因此新创建一个事务时,这个事务
的系统版本号比之前的系统版本号都大,也就是比所有数据行快照的创建版本号都大。
(1) SELECT
多个事务必须读取到同一个数据行的快照,并且这个快照是距离现在最近的一个有效快照。但是也有例外,如果有一
个事务正在修改该数据行,那么它可以读取事务本身所做的修改,而不用和其它事务的读取结果一致。
把没有对一个数据行做修改的事务称为 T,T所要读取的数据行快照的创建版本号必须小于T的版本号,因为如果大于或者等于 T的版本号,那么表示该数据行快照是其它事务的最新修改,因此不能去读取它。除此之外,T所要读取的数据行快照的删除版本号必须大于T的版本号,因为如果小于等于T的版本号,那么表示该数据行快照是已经被删除的,不应该去读取它。
(2) INSERT
将当前系统版本号作为数据行快照的创建版本号。
(3) DELETE
将当前系统版本号作为数据行快照的删除版本号。
(4) UPDATE
将当前系统版本号作为更新前的数据行快照的删除版本号,并将当前系统版本号作为更新后的数据行快照的创建版本
号。可以理解为先执行 DELETE 后执行 INSERT。
5. 快照读与当前读
(1) 快照读
使用 MVCC 读取的是快照中的数据,这样可以减少加锁所带来的开销。
select * from table …;
(2) 当前读
读取的是最新的数据,需要加锁。以下第一个语句需要加 S 锁,其它都需要加 X 锁。
select * from table where ? lock in share mode;
select * from table where ? for update;
insert;
update;
delete;
六、Next-Key Locks
Next-Key Locks 是 MySQL 的InnoDB存储引擎的一种锁实现。MVCC 不能解决幻影读问题,Next-Key Locks 就是为了解决这个问题而存在的。在可重复读(REPEATABLE READ)隔离级别下,使用 MVCC + Next-Key Locks 可以解决幻读问题。
1. Record Locks
锁定一个记录上的索引,而不是记录本身。如果表没有设置索引,InnoDB 会自动在主键上创建隐藏的聚簇索引,因此 Record Locks 依然可以使用。
2. Gap Locks
锁定索引之间的间隙,但是不包含索引本身。例如当一个事务执行以下语句,其它事务就不能在 t.c 中插入15。
SELECT c FROM t WHERE c BETWEEN 10 and 20 FOR UPDATE;
3. Next-Key Locks
它是 Record Locks 和 Gap Locks 的结合,不仅锁定一个记录上的索引,也锁定索引之间的间隙。例如一个索引包含以下值:10, 11, 13, and 20,那么就需要锁定以下区间:
(-∞, 10]
(10, 11]
(11, 13]
(13, 20]
(20, +∞)
七、关系型数据库设计理论
1. 函数依赖
记 A->B 表示 A 函数决定 B,也可以说 B 函数依赖于 A。
如果 {A1,A2,… ,An} 是关系的一个或多个属性的集合,该集合函数决定了关系的其它所有属性并且是最小的,那
么该集合就称为键码。
对于 A->B,如果能找到 A 的真子集 A’,使得 A’-> B,那么 A->B 就是部分函数依赖,否则就是完全函数依赖。
对于 A->B,B->C,则 A->C 是一个传递函数依赖。
2. 异常
以下的学生课程关系的函数依赖为 {Sno, Cname} -> {Sname, Sdept, Mname, Grade},键码为 {Sno, Cname}。也
就是说,确定学生和课程之后,就能确定其它信息。
不符合范式的关系,会产生很多异常,主要有以下四种异常:
- 冗余数据:例如 学生-2 出现了两次。
- 修改异常:修改了一个记录中的信息,但是另一个记录中相同的信息却没有被修改。
- 删除异常:删除一个信息,那么也会丢失其它信息。例如删除了 课程-1 需要删除第一行和第三行,那么 学生-1 的信息就会丢失。
- 插入异常:例如想要插入一个学生的信息,如果这个学生还没选课,那么就无法插入。
3. 范式
范式理论是为了解决以上提到四种异常。高级别范式依赖于低级别的范式,1NF 是最低级别的范式。
(1) 第一范式(1NF)
属性不可分。
(2) 第二范式(2NF)
每个非主属性完全函数依赖于键码。可以通过分解来满足。
分解前
以上学生课程关系中,{Sno, Cname} 为键码,有如下函数依赖:
- Sno -> Sname, Sdept
- Sdept -> Mname
- Sno, Cname-> Grade
Grade 完全函数依赖于键码,它没有任何冗余数据,每个学生的每门课都有特定的成绩。
Sname, Sdept 和 Mname 都部分依赖于键码,当一个学生选修了多门课时,这些数据就会出现多次,造成大量冗余数据。
分解后
关系-1
有以下函数依赖:
非主属性不传递函数依赖于键码。上面的 关系-1 中存在以下传递函数依赖:
- Sno -> Sdept -> Mname 可以进行以下分解:
关系-11
关系-12
八、ER图
Entity-Relationship,有三个组成部分:实体、属性、联系。用来进行关系型数据库系统的概念设计。
1. 实体(entity)
数据模型中的数据对象,例如人、学生、音乐都可以作为一个数据对象,用长方体来表示,每个实体都有自己的实体成员(entity member)或者说实体对象(entity instance),例如学生实体里包括张三、李四等。
2. 属性(attribute)
数据对象所具有的属性(所具有的列),例如学生具有姓名、学号、年级等属性,用椭圆形表示,属性分为唯一属性(unique attribute)和非唯一属性,唯一属性(主键)指的是唯一可用来标识该实体实例或者成员的属性,用下划线表示,一般来讲实体都至少有一个唯一属性。
3. 联系(relationship)
用来表现数据对象与数据对象之间的联系,例如学生的实体和成绩表的实体之间有一定的联系,每个学生都有自己的成绩表,这就是一种关系,关系用菱形来表示。
4. 实体的三种联系
包含一对一,一对多,多对多三种。
- 如果 A 到 B 是一对多关系,那么画个带箭头的线段指向 B;
- 如果是一对一,画两个带箭头的线段;
- 如果是多对多,画两个不带箭头的线段。