Few-shot Learning
文章平均质量分 93
Love向日葵的兮兮子
面朝大海,春暖花开
展开
-
基于contrast learning的few-shot learning论文集合(3)
论文五:《Few-shot Visual Reasoning with Meta-analogical Contrastive Learning》NIPS2020论文链接:https://proceedings.neurips.cc/paper/2020/file/c39e1a03859f9ee215bc49131d0caf33-Paper.pdf代码链接:无原创 2022-05-18 15:25:37 · 563 阅读 · 0 评论 -
基于contrast learning的few-shot learning论文集合(2)
论文三:《Supervised Momentum Contrastive Learning for Few-Shot Classification》CoRR 2021论文链接:https://arxiv.org/pdf/2101.11058.pdf代码链接:无这项工作中,作者通过将鉴别性的实例对比学习和监督性学习结合在一个称为Supervised Momentum Contrastive learning **(SUPMOCO)**的框架中,研究了自监督和监督学习这两种信息源的互补作用论文四:原创 2022-05-09 14:43:13 · 1081 阅读 · 0 评论 -
基于contrast learning的few-shot learning论文集合(1)
论文一:《Learning a Few-Shot Embedding Model with Contrastive Learning》AAAI 2021论文链接:https://www.aaai.org/AAAI21Papers/AAAI-2249.LiuC.pdf代码链接:https://github.com/corwinliu9669/Learning-a-Few-shot-Embedding-Model-with-Contrastive-Learning本文提出一种新的对比训练方案infoP原创 2022-05-07 11:38:22 · 1236 阅读 · 1 评论 -
NIPS2019《Cross Attention Network for Few-shot Classification》
发表于NIPS2019!!!论文链接:https://proceedings.neurips.cc/paper/2019/file/01894d6f048493d2cacde3c579c315a3-Paper.pdf代码链接:https://github.com/blue-blue272/fewshot-CAN1. 动机虽然有希望,但很少有人对所提取的特征的可识别性给予足够的重视。它们通常独立地从支持类和无标签查询样本中提取特征,因此特征不够有区别。一方面,支持/查询集中的测试图像来自不可见的类.原创 2022-03-08 16:17:32 · 2711 阅读 · 1 评论 -
《ECKPN: Explicit Class Knowledge Propagation Network for Transductive Few-shot Learning》
发表于CVPR2021!!!论文链接:https://arxiv.org/pdf/2106.08523.pdf代码链接:无1. 问题近年来,基于直推图的方法在少样本分类中取得了很大的成功。然而,现有的大多数方法都忽略了探索class-level的知识,这些知识很容易被人类从少数几个样本中学习到2. 贡献1)首次提出了一种基于图的端到端小样本学习体系结构,该体系结构可以明确地学习丰富的类知识,以指导查询样本的图推理2)建立了多头样本关系来探究两两样本之间的细粒度比较,这有助于基于两两关系学习更.原创 2022-03-08 11:16:35 · 2914 阅读 · 0 评论 -
《Prototypical Networks for Few-shot Learning》
发表于NIPS2017!!!论文链接:https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf代码链接:https://github.com/jakesnell/prototypical-networks1. 问题小样本分类问题——训练集中没有看到的新类,且每个新类只有少量的例子2. 贡献本文主要贡献就是为小样本分类提出一个新的网络——Prototypical Networ.原创 2022-03-07 20:12:07 · 334 阅读 · 0 评论