机器学习
TYP
这个作者很懒,什么都没留下…
展开
-
对《OmniNet: Omnidirectional Representations from Transformers》方法的理解
1.OMNIDIRECTIONAL REPRESENTATIONS对于一个L层的transformer网络,输入的数据维度是N×d,同理得transformer每一层的输出都是N×d。xformer(X)=X1,X2⋅⋅⋅XLxformer(X)=X_1,X_2···X_Lxformer(X)=X1,X2⋅⋅⋅XL ,Xi∈RN×dX_i ∈ R^{N×d}Xi∈RN×d对于上面的公式,得到的实际是transformer每一层的输出。然后omninet的机制其实就是下面的公式:O=A原创 2022-02-28 16:56:46 · 516 阅读 · 0 评论 -
利用简单的全连接神经网络来预测1月28日的武汉新型冠状病毒累计确诊病例数
代码背景这几天,由于新型冠状病毒的爆发,每天的新确诊人数都让早上起床的我感到吃惊!大家为了给社会贡献一份力量,即使在春节期间,都可以待在家里少外出。各大IT企业纷纷捐钱捐物资,为抗战一线出力!而此时待在家里的我们能做些什么呢?由于我是学计算机科学与技术的大三学生,想在待在家的时间,利用专业知识,预测一下下一天的确诊人数。因此,就简单地写了一个基础代码,跑了一下,得到了一个结果,准确率不敢保证,...原创 2020-01-27 13:02:41 · 4217 阅读 · 4 评论 -
DBSCAN地图的实现
DBSCAN的python实现什么是DBSCAN原理代码实现可视化工具什么是DBSCAN最近在搞比赛,深入理解了一下DBSCAN算法,下面说说我的心得DBSCAN(Density-Based Spatial Clustering of Application with Noise,具有噪声的基于密度的空间聚类应用)是一种基于高密度连接区域的密度聚类算法。该算法将具有足够高密度的区域划分为簇...原创 2020-01-18 19:07:45 · 696 阅读 · 0 评论 -
机器学习:用梯度下降法解决线性回归问题
线性回归线性回归通常是利用已知的数据集,来预测未来的数据的大小。例如利用往年的房价数据集来预测未来的房价。梯度下降法本次利用梯度下降法求线性回归,是属于监督学习的范畴。通过真实值与预测值的差来求代价函数。下面直接看代码:import matplotlib.pyplot as pltimport numpy as npx=np.array([1,1,1,1,2,2,2,3,3,3,3,...原创 2019-07-15 12:00:03 · 530 阅读 · 0 评论 -
逻辑回归
逻辑回归首先,逻辑回归并不是属于回归问题,而是属于分类问题。由于历史原因,他就叫逻辑回归而不叫逻辑分类了。逻辑回归还有梯度下降,在机器学习以及深度学习中都非常频繁地会用到。我们这里的逻辑回归用sigmoid函数,使得我们的预测值在(0,1)区间内,当其大于某个阈值时,可以有那么多的把握认为它为某一类。下面先上代码import numpy as npimport matplotlib.pyp...原创 2019-07-20 10:57:45 · 1278 阅读 · 0 评论