python的替换

本文介绍了使用Python的Pandas库进行数据预处理的方法,包括如何处理缺失值(使用fillna函数填充特定值)及如何替换已有值。文章通过具体代码示例展示了不同场景下fillna函数的使用技巧,如inplace参数的作用,以及如何根据条件替换DataFrame中的值。
摘要由CSDN通过智能技术生成

1.空白的替换–填充

df[col].fillna('-1', inplace=True)

注意这里填充的是文本-1,而不是数字-1。在labelencoder里面因为是把文本硬编码,所以填充时需要用“-1”

如果没有inplace的话有时候可能填充不上,比如:
原始数据集缺失数量
yuanshi
填充之后发现还是有缺失值
在这里插入图片描述
不过,填上inplace=True就没问题了

另外如果针对某列进行填充(不写inplace),会返回一个list,把它pd.DataFrame后就可以在不改变原始数据集的情况下得到这一列填充后的pd,也许会有派的上用场的地方吧
在这里插入图片描述
2.有值,替换成另一个值

aumtrain4.loc[aumtrain4['C1']==-1, 'C1'] = 0

aumtrain4[‘C1’]==-1也可以用别的列来定位,不过我现在暂时就用它比较多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值