礼物的最大价值(动态规划)

题目:
在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

例子:
在这里插入图片描述
代码1优化后(动态规划)

class Solution {
    public int maxValue(int[][] grid) {
        for (int j=1; j<grid[0].length; j++){grid[0][j] += grid[0][j-1];}
        for (int i=1; i<grid.length; i++){grid[i][0] += grid[i-1][0];}
        for (int i=1; i<grid.length; i++){
            for (int j=1; j<grid[0].length; j++){
                grid[i][j] += Math.max(grid[i-1][j], grid[i][j-1]);
            }
        }
        return grid[grid.length-1][grid[0].length-1];
    }
}

代码1解释:
直接在原数组上改动不会影响结果。同时可以降低代码行数。
利用Math.max函数可以简化。
状态转移方程式很容易,很明白。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值