题目:
在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
例子:
代码1优化后(动态规划)
class Solution {
public int maxValue(int[][] grid) {
for (int j=1; j<grid[0].length; j++){grid[0][j] += grid[0][j-1];}
for (int i=1; i<grid.length; i++){grid[i][0] += grid[i-1][0];}
for (int i=1; i<grid.length; i++){
for (int j=1; j<grid[0].length; j++){
grid[i][j] += Math.max(grid[i-1][j], grid[i][j-1]);
}
}
return grid[grid.length-1][grid[0].length-1];
}
}
代码1解释:
直接在原数组上改动不会影响结果。同时可以降低代码行数。
利用Math.max函数可以简化。
状态转移方程式很容易,很明白。