广场上的小朋友们排成了整齐的方阵。具体来说,我们可以把每个小朋友看做是一个点,那么小朋友们就形成了 n\times nn×n 的点阵。方阵中,小朋友 AA 和小朋友 BB 互相可以看见,当且仅当二人之间的连线不经过别的小朋友,且他们之间的距离不超过 kk (因为太远就看不见了)。我们想知道有多少对小朋友互相可以看见。(A,B)(A,B) 与 (B,A)(B,A) 算同一对。
例如, n=2,k=1时答案为 44,n=2,k=2 时答案为 66(距离为 11 的有 44 对,距离为 \sqrt 2
2
的有 22 对), n=3,k=2 时答案为 2020 。
现在我们想要知道,当 n=1000,k=500 时的答案是多少。由于答案过大,请回答对 10^9+7取模后的结果。
比赛链接:https://www.jisuanke.com/contest/6516?view=challenges
solution:
若要两个点可见、则其横坐标之差x与纵坐标之差y的最大公约数为1
若x与y为零、则该区间有2 * n * (n - 1)对
当x、y均大于0、则有2 * (n - x) * ( n - y) 对
详细代码:
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n, k, res;
cin >> n >> k;
res = 2 * n * (n - 1) % 1000000007;
for (int i = 1; i < n; ++i){
for (int j = 1; j < n; ++j){
if (__gcd(i, j) == 1 && i * i + j * j <= k * k){
res += (n - i) * (n - j) * 2;
res %= 1000000007;
}
}
}
cout << res << endl;
return 0;
}