题目描述: 广场上的小朋友们排成了整齐的方阵。具体来说,我们可以把每个小朋友看做是一个点,那么小朋友们就形成了 n×n 的点阵。方阵中,小朋友 A 和小朋友 B 互相可以看见,当且仅当二人之间的连线不经过别的小朋友,且他们之间的距离不超过 k(因为太远就看不见了)。我们想知道有多少对小朋友互相可以看见。(A,B)与 (B,A) 算同一对。
解题报告:
不妨设 A(x1,y1),B(x2,y2);x=x1-x2,y=y1-y2;
首先满足互相可见的,则 gcd(x,y)=1;
当x,y均大于0时,贡献为 2*(n-x)(n-y)
当x或y为0时 贡献 2*(n-1)*n
#define first f
#define second s
#define ll long long
#define mp make_pair
#define pb push_back
#define pf push_front
#define lb lower_bound
#define ub upper_bound
#include <bits/stdc++.h>
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int maxn=2005;
const int MOD=1e9+7;
const double PI=acos(-1);
const double e=2.718281828459;
int gcd(int x,int y)
{
return y==0?x:gcd(y,x%y);
}
int main()
{
int n=1000,k=500;
int ans=2*(n-1)*n%MOD;
for(int x=1;x<=n-1;x++){
for(int y=1;y<=n-1;y++){
if(gcd(x,y)==1&&x*x+y*y<=k*k){
ans+=(n-x)*(n-y)*2;ans%=MOD;
}
}
}
printf("%d\n",ans);
return 0;
}