奇偶数列法则
如a ^ 2 +b ^ 2 =c ^ 2是直角三角形的三个整数边长,则必有如下a值的奇数列、偶数列关系成立;
1、a是奇数
则有:a=2n+1、b=n ^ 2 + (n + 1) ^ 2 - 1、c = n ^ 2 + (n + 1) ^ 2;
2、a是偶数
则有:a=2n、b=n ^ 2 - 1、c=n ^ 2 + 1;
由勾股定理容易证得;
奇偶数列法则(数论)
最新推荐文章于 2024-09-05 00:48:00 发布
奇偶数列法则
如a ^ 2 +b ^ 2 =c ^ 2是直角三角形的三个整数边长,则必有如下a值的奇数列、偶数列关系成立;
1、a是奇数
则有:a=2n+1、b=n ^ 2 + (n + 1) ^ 2 - 1、c = n ^ 2 + (n + 1) ^ 2;
2、a是偶数
则有:a=2n、b=n ^ 2 - 1、c=n ^ 2 + 1;
由勾股定理容易证得;