数据结构实验之图论一:基于邻接矩阵的广度优先搜索遍历
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列。(同一个结点的同层邻接点,节点编号小的优先遍历)
Input
输入第一行为整数n(0< n <100),表示数据的组数。
对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。
下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
Output
输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示BFS的遍历结果。
Sample Input
1 6 7 0 0 3 0 4 1 4 1 5 2 3 2 4 3 5
Sample Output
0 3 4 2 5 1
Hint
以邻接矩阵作为存储结构。
Source
广度优先搜索遍历简称BFS,是在图中最基本的遍历方式,广度优先是以一个结点为起始点,向周围扩散的搜索。而本题中图的存储方式则采用邻接矩阵的方式进行存储,邻接矩阵存储图的特点是以对角线为中心对称,因此在代码的实现上要注意对称关系。
AC代码:
# include<bits/stdc++.h>
using namespace std;
int gra[101][101];//图的数组的建立
int vis[101],ans[101];//vis代表的是存放结点的数组,ans代表的是存放输出结点的数组
int k,m,t,cnt;
void bfs(int t)//bfs函数,建议先观察主函数再看bfs的调用
{
ans[cnt++]=t;//先将题目中起始结点放入输出结果数组
queue<int>q;//建立一个队列
q.push(t);//先将起始结点压入队列
vis[t]=1;让起始结点的vis值等于一,代表这个结点已经遍历过
while(!q.empty())//当队列不为空的时候
{
int temp=q.front();//temp代表一个行坐标,让行坐标等于队首元素
q.pop();//队首元素出队列
for(int i=0;i<k;i++)//遍历开始
{
if(!vis[i]&&gra[temp][i])//意思就是vis!=1,gra[temp][i]==1,当i结点没有遍历过,并且在图中它有边
{
q.push(i);//将结点压入队列
ans[cnt++]=i;//输出数组记录下i值
vis[i]=1;//vis=1代表已经遍历过
}
}
}
}
int main()
{
int n,x,y;//x,y用来充当邻接矩阵里面坐标
scanf("%d",&n);//输入组数
while(~scanf("%d %d %d",&k,&m,&t))//输入每一组的数据
{
memset(gra,0,sizeof(gra));//数组需要清空,否则会出问题
memset(vis,0,sizeof(vis));
for(int i=0;i<m;i++)//输入坐标,将图gra数组以对角线为中心进行对称化
{
scanf("%d %d",&x,&y);
gra[x][y]=gra[y][x]=1;
}
cnt=0;//ans数组从0开始计数
bfs(t);//调用bfs函数
for(int i=0;i<k;i++)//输出结果
{
if(i==k-1)
{
printf("%d\n",ans[i]);
}
else
{
printf("%d ",ans[i]);
}
}
}
return 0;
}