dp专题 cf 4D

题意:给一个长方形大小,现在有n个高宽确定的长方形,要求组成序列,满足:1.宽严格单调递增而高严格单调递增 2.组成序列的最小的长方形要比给定的长方形大。
问最长序列及其编号。
有点类似于lis,我们为了方便打印结果所以选择n平方的dp算法。
令dp[i]为以i结尾的最长上升序列大小,那么dp[i]=max(dp[i],dp[j]+1|dp[j]<dp[i])
即当前dp能被所有小于他的转移到。再另开一个pre数组,记录前项是哪一个。
(wa了一发再自定义运算符那里,<=直接按照了常规写,比较第一个再比较第二个,但这里是共同大小,即w和h都不能<=,所应该用||)
ps:一开始以为这道题是个模拟水题,,写到一半发现8太行hhhh

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#include<climits>
#include<stack>
#include<vector>
#include<queue>
#include<set>
#include<map>
//#include<regex>
#include<cstdio>
#define up(i,a,b)  for(int i=a;i<b;i++)
#define dw(i,a,b)  for(int i=a;i>b;i--)
#define upd(i,a,b) for(int i=a;i<=b;i++)
#define dwd(i,a,b) for(int i=a;i>=b;i--)
//#define local
typedef long long ll;
const double esp = 1e-6;
const double pi = acos(-1.0);
const int INF = 0x3f3f3f3f;
const int inf = 1e9;
using namespace std;
int read()
{
	char ch = getchar(); int x = 0, f = 1;
	while (ch<'0' || ch>'9') { if (ch == '-')f = -1; ch = getchar(); }
	while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
	return x * f;
}
typedef pair<int, int> pir;
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define lrt root<<1
#define rrt root<<1|1
int n, w, h;
const int N = 5005;
int pre[N];
int dp[N];
struct node { int w, h, pos; bool operator<(const node a)const { return w == a.w ? h < a.h : w < a.w; }
bool operator<=(const node a)const { return w <= a.w||h <= a.h; }
}vec[N];
int main()
{
	n = read(), w = read(), h = read();
	int x, y;
	up(i, 0, n) { x = read(), y = read(); vec[i] = node{ x,y,i }; }
	sort(vec, vec + n);
	memset(pre, -1, sizeof(pre));
	up(i, 0, n)
	{
		if (vec[i] <= node{ w,h,0 })continue;
		dp[i] = 1;
		up(j, 0, i)
		{
			if (vec[i] <= vec[j])continue;
			if (vec[j] <= node{ w,h,0 })continue;
			if (dp[i] < dp[j] + 1)
			{
				dp[i] = dp[j] + 1;
				pre[i] = j;
			}
		}
	}
	int ans = -1; int pos =-1;
	up(i, 0, n)
	{
		if (ans < dp[i])ans = dp[i], pos = i;
	}
	if (ans == 0) { cout << "0" << endl; }
	else
	{
		vector<int>ansvec;
		for (int i = pos; ~i; i = pre[i])
		{
			ansvec.push_back(i);
		}
		reverse(ansvec.begin(), ansvec.end());
		cout << ansvec.size() << endl;
		for (auto k : ansvec)cout << vec[k].pos+1 << " ";
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值