POJ3420状压dp和矩阵快速幂的结合

相当好的一道题。
首先这道题排除轮廓线的方法,很明显不可能,数据这么大。
不过我们可以从这里开始思考。
只要上一排的顺序排列好,那么下一排的方法是固定的,下一排的方法固定,下下一排就是固定的,便是机械的固定操作。
我们这里知道了,一共就只有4列,其实可以dp出4列,两行的所有情况。
那么往后dp,便是一系列一摸一样的操作,这一行与上一行匹配,那么下一行就出来了.假设一个dp数组,代表能不能转移。1表示能,0表不能,res数组表示方法数目。
于是就有res[pre][new]+=dp[pre][new1]*dp[new1][new]
可以看出来,等号左边就类似于矩阵乘法,一个行不变,一个列不变,相乘做相加运算。
所以就可表达成为res=dpn。dp是一个16乘以16的矩阵,因为一共有0~1111种方法。
最后取res[15][15]因为相当于考虑在边框的外面一行是全1行,这样才能保证我们的第一行是正确的,再加上最后一行是满的,就可以保证我们的做法是合理的做法,因为dfs里面每一个都是合法操作。
精髓在于dp的值,只有1和1相乘才能为1.
相当于找,从1111到1111的有向图中,路径长为n的路径数目。(离散数学)

#include<iostream>
#include<string>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#include<climits>
#include<stack>
#include<vector>
#include<queue>
#include<set>
#include<map>
#include<cstdio>
#define up(i,a,b)  for(int i=a;i<b;i++)
#define dw(i,a,b)  for(int i=a;i>b;i--)
#define upd(i,a,b) for(int i=a;i<=b;i++)
#define dwd(i,a,b) for(int i=a;i>=b;i--)
//#define local
typedef long long ll;
const double esp = 1e-6;
const double pi = acos(-1.0);
const long long INF = 0x3f3f3f3f;
using namespace std;
typedef pair<int, int> pir;
int n, m;
struct mat {
int  a[16][16];
};
mat mod;
mat mat_mul(mat x, mat y)
{
	mat res;
	memset(res.a, 0, sizeof(res.a));
	up(i, 0, 16)
	{
		up(j, 0, 16)
		{
			up(k, 0, 16)
			{
				res.a[i][j] = (res.a[i][j] + (x.a[i][k] * y.a[k][j])%m) % m;
			}
		}
	}
	return res;
}
mat mat_pow()
{
	mat res;
	memset(res.a, 0, sizeof(res.a));
	up(i, 0, 16)
		res.a[i][i] = 1;
	while (n)
	{
		if (n & 1)res = mat_mul(res, mod);
		mod = mat_mul(mod, mod);
		n >>= 1;
	}
	return res;
}
void dfs(int i,int news,int old)
{
	if (i > 4)return;
	if (i == 4)
	{
		mod.a[old][news] = 1;
	}
	dfs(i + 1, news << 1, old << 1 | 1);
	dfs(i + 1, news << 1 | 1, old << 1);
	dfs(i + 2, news << 2 | 3, old << 2|3);
}
int main()
{
	while (cin >> n >> m&&n&&m)
	{
		memset(mod.a, 0, sizeof(mod.a));
		dfs(0, 0, 0);
		mat res = mat_pow();
		cout << res.a[15][15] << endl;
	}
	return 0;
}

这道题目a完,认真思考一下,其实很多dp都可以用矩阵来优化。
因为我们可以发现,这种具有滚动数组性质的,和前后状态不变的,都可以用
res+=dp[new][pre]*dp[pre][new1]大致来刻画。
比如类似dp[i]=dp[i-a]+dp[i-b]的,都可以用矩阵来刻画,只是系数不一样。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值