Gym 100827F Knights (状压DP+矩阵快速幂)

题目链接:http://codeforces.com/gym/100827/attachments

#include<bits/stdc++.h>
using namespace std;
#define debug puts("YES");
#define rep(x,y,z) for(int (x)=(y);(x)<(z);(x)++)
#define ll long long
#define lrt int l,int r,int rt
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define root l,r,rt
#define mst(a,b) memset((a),(b),sizeof(a))
#define pii pair<ll,ll>
#define mk(x,y) make_pair(x,y)
const int  maxn =1e3+1;
const int mod=1e9+9;
const int ub=1e6;
ll powmod(ll x,ll y){ll t; for(t=1;y;y>>=1,x=x*x%mod) if(y&1) t=t*x%mod; return t;}
ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}
/*
题目大意:给定一个二维平面,要求放置若干个马,
其放置的马互相不能攻击,问总体方案数。

用状压DP搞状态转移方程的话,
大体是dp[i][s][t]=sigma dp[i-1][t][k],其中s,t,k互相之间满足条件(见代码)。
但是i的最大长度数量级是九次方,所以,
我们把(s,t)的位数阔一倍来表示两个状态,
即dp[i][S]=sigma di[i-1][T]。分别用其高m位和低m位标识两个状态,
然后用矩阵快速幂加速即可。

矩阵的初始化见代码。
时间复杂度:O(2^(2m)*logn)。
*/
int m,n,a[1<<8];
struct mat{
    int a[1<<8][1<<8];
    mat(){mst(a,0);}
    mat operator*(const mat& y) const{
        mat ret;
        rep(i,0,m) rep(j,0,m) rep(k,0,m)
            ret.a[i][j]=(ret.a[i][j]+1LL*a[i][k]*y.a[k][j]%mod)%mod;
        return ret;
    }
};
mat powmat(mat x,int p){
    mat ret;rep(i,0,m) ret.a[i][i]=1;
    for(;p;x=x*x,p>>=1) if(p&1) ret=x*ret;
    return ret;
}
int main(){
    int t;scanf("%d",&t);
    while(t--){
        scanf("%d%d",&m,&n);int tm=m;
        m=(1<<(2*m));
        mst(a,0);rep(i,0,(1<<tm)) a[i<<tm]=1;///初始化矩阵
        mat x;
        rep(i,0,m) rep(j,0,m){
            int s1=i>>tm,t1=i%(1<<tm);///高四位,低四位
            int s2=j>>tm,t2=j%(1<<tm);
            if(s2!=t1) continue;
            if( (t1<<2)&s1 || (s1<<2)&t1 ) continue;
            if( (t1<<2)&t2 || (t1<<2)&t2 ) continue;
            if( (t2<<1)&s1 || (s1<<1)&t2 ) continue;
            x.a[i][j]=1;
        }
        ///for(int i=0;i<m;i++,puts("")) for(int j=0;j<m;j++) printf("%d%c",x.a[i][j],(j==m-1)?'\n':' ');
        x=powmat(x,n-1);
        ll ans=0;
        rep(i,0,m) rep(j,0,m) if(a[j])
            ans=(ans+x.a[i][j])%mod;
        printf("%lld\n",ans);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值