深度学习相关
文章平均质量分 76
着魔村民
爱与希望与你同在 -
展开
-
Dcgan数据增强-训练自己的数据集-快速上手教程
Step1:从github将标准dcgan的源码下载至本地Step2:准备自己的数据集重点:所有图片 格式、尺寸、通道数 完全一致!(图片格式建议.jpg)新建一个 data 文件夹,里面再建一个 train文件夹, 然后把你所有的图片塞进去, 文件夹名字后面会有关联,务必叫 data 和 traine.g 我这里是 3张 96x96的三通道RGB JPG格式的图片然后把你新建的data文件夹,拖到源码的同目录中;Step3:配置环境这里我用的是conda create -n name原创 2021-05-12 11:00:42 · 5920 阅读 · 23 评论 -
Soft-NMS算法概念(改进的NMS算法)
Soft-NMS算法(改进的NMS算法)原版的NMS算法,即非极大值抑制,其大致思路:获得得分最高的预选框,然后计算其它预选框与其重叠区域,如果大于某一阈值,则将其舍弃。可能产生的问题:目标的漏检,如下图所示:由于得分最高的那个框已经被选出来了,得分第二高的框与其重叠面积过大,因此通过NMS后被舍弃了,导致第二匹马不能被检测出来,为了解决这个问题,Soft-NMS出现了。Soft-NMS...原创 2020-03-29 16:15:35 · 1622 阅读 · 0 评论 -
SqueezeNet网络学习笔记
SqueezeNet网络学习笔记首先SqueezeNet整体结构大致为:在常规的卷积网络之中,加入几组由Fire模块构成的单元,如图所示:(图片取自知乎:https://zhuanlan.zhihu.com/p/49465950)由上图可以看出这个Fire模块就是SqueezeNet的核心内容了;Fire模块:(图片取自:https://blog.csdn.net/liangjiub...原创 2020-03-17 18:47:40 · 185 阅读 · 0 评论 -
RPN网络学习
RPN网络学习在阅读学习了一些其他人关于RPN网络的讲解后,总结自己的理解.如图所示:(1)在进入RPN网络之前,可以先经过数个卷积池化层的运算,然后得到一张特征图,这张特征图即为RPN网络的输入;(2)进入RPN网络后可以对其进行一次卷积操作,得到的还是一张特征图;(3)此时分为两条路线 a 和 ba:对于这张特征图上的每一点都会预测k=9个预选框,而第一条路线,需要用于区分这些框...原创 2020-03-02 10:25:59 · 494 阅读 · 0 评论 -
Labelme2voc过程中遇到的问题及解决途径
Labelme2voc过程中遇到的问题及解决途径跟着诸如:https://blog.csdn.net/qq_31347869/article/details/91180129https://github.com/wkentaro/labelme/tree/v3.11.2进行实践的过程中,在将用labelme标注好的json文件转换成voc格式过程中,遇到了一些奇奇怪怪的问题,进行说明及给出解...原创 2020-02-26 12:12:02 · 3887 阅读 · 8 评论