基础数列

项数为 2 n 2n 2n

S 偶 − S 奇 = n d S_偶-S_奇=nd SS=nd

S 奇 = n a 1 + n ( n − 1 ) d S_奇=na_1+n(n-1)d S=na1+n(n1)d

S 偶 S_偶 S= S 奇 + n d S_奇+nd S+nd

S 偶 S 奇 = n a 1 + n 2 d n a 1 + n ( n − 1 ) d = a 1 + n d a 1 + ( n − 1 ) d = a n + 1 a n \frac{S_偶}{S_奇}=\frac{na_1+n^2d}{na_1+n(n-1)d}=\frac{a_1+nd}{a_1+(n-1)d}=\frac{a_{n+1}}{a_n} SS=na1+n(n1)dna1+n2d=a1+(n1)da1+nd=anan+1

项数为 2 n + 1 2n+1 2n+1

S 奇 − S 偶 = n d + a 1 S_奇-S_偶=nd+a_1 SS=nd+a1

S 偶 = n a 1 + n 2 d S_偶=na_1+n^2d S=na1+n2d

S 奇 = ( n + 1 ) a 1 + n ( n + 1 ) d S_奇=(n+1)a_1+n(n+1)d S=(n+1)a1+n(n+1)d

S 偶 S 奇 = n a 1 + n 2 d ( n + 1 ) a 1 + n ( n + 1 ) d = n ( a 1 + n d ) ( n + 1 ) ( a 1 + n d ) = n n + 1 \frac{S_偶}{S_奇}=\frac{na_1+n^2d}{(n+1)a_1+n(n+1)d}=\frac{n(a_1+nd)}{(n+1)(a_1+nd)}=\frac{n}{n+1} SS=(n+1)a1+n(n+1)dna1+n2d=(n+1)(a1+nd)n(a1+nd)=n+1n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值