项数为 2 n 2n 2n时
S 偶 − S 奇 = n d S_偶-S_奇=nd S偶−S奇=nd
S 奇 = n a 1 + n ( n − 1 ) d S_奇=na_1+n(n-1)d S奇=na1+n(n−1)d
S 偶 S_偶 S偶= S 奇 + n d S_奇+nd S奇+nd
S 偶 S 奇 = n a 1 + n 2 d n a 1 + n ( n − 1 ) d = a 1 + n d a 1 + ( n − 1 ) d = a n + 1 a n \frac{S_偶}{S_奇}=\frac{na_1+n^2d}{na_1+n(n-1)d}=\frac{a_1+nd}{a_1+(n-1)d}=\frac{a_{n+1}}{a_n} S奇S偶=na1+n(n−1)dna1+n2d=a1+(n−1)da1+nd=anan+1
项数为 2 n + 1 2n+1 2n+1时
S 奇 − S 偶 = n d + a 1 S_奇-S_偶=nd+a_1 S奇−S偶=nd+a1
S 偶 = n a 1 + n 2 d S_偶=na_1+n^2d S偶=na1+n2d
S 奇 = ( n + 1 ) a 1 + n ( n + 1 ) d S_奇=(n+1)a_1+n(n+1)d S奇=(n+1)a1+n(n+1)d
S 偶 S 奇 = n a 1 + n 2 d ( n + 1 ) a 1 + n ( n + 1 ) d = n ( a 1 + n d ) ( n + 1 ) ( a 1 + n d ) = n n + 1 \frac{S_偶}{S_奇}=\frac{na_1+n^2d}{(n+1)a_1+n(n+1)d}=\frac{n(a_1+nd)}{(n+1)(a_1+nd)}=\frac{n}{n+1} S奇S偶=(n+1)a1+n(n+1)dna1+n2d=(n+1)(a1+nd)n(a1+nd)=n+1n