考研数列求和:平方和、立方和公式推导


一. 推导 1 2 + 2 2 + 3 2 + … + n 2 1^2 + 2^2 + 3^2 + \ldots + n^2 12+22+32++n2 的求和公式

初始观察

考虑立方数的差异:

( k + 1 ) 3 − k 3 = 3 k 2 + 3 k + 1 (k+1)^3 - k^3 = 3k^2 + 3k + 1 (k+1)3k3=3k2+3k+1

这个等式可以通过简单地展开左边的表达式得到。

这个等式揭示了连续两个立方数之差可以表示为一个与平方数相关的表达式。当我们将这个观察应用于一系列连续的立方数时,就出现了一个有趣的模式:

  • 2 3 − 1 3 = 3 × 1 2 + 3 × 1 + 1 2^3 - 1^3 = 3 \times 1^2 + 3 \times 1 + 1 2313=3×12+3×1+1
  • 3 3 − 2 3 = 3 × 2 2 + 3 × 2 + 1 3^3 - 2^3 = 3 \times 2^2 + 3 \times 2 + 1 3323=3×22+3×2+1
  • 4 3 − 3 3 = 3 × 3 2 + 3 × 3 + 1 4^3 - 3^3 = 3 \times 3^2 + 3 \times 3 + 1 4333=3×32+3×3+1
  • … \ldots
  • ( n + 1 ) 3 − n 3 = 3 n 2 + 3 n + 1 (n+1)^3 - n^3 = 3n^2 + 3n + 1 (n+1)3n3=3n2+3n+1

应用差分方法

我们将这个差分方法应用于 k = 1 , 2 , … , n k = 1, 2, \ldots, n k=1,2,,n

∑ k = 1 n [ ( k + 1 ) 3 − k 3 ] = ∑ k = 1 n ( 3 k 2 + 3 k + 1 ) \sum_{k=1}^{n} [(k+1)^3 - k^3] = \sum_{k=1}^{n} (3k^2 + 3k + 1) k=1n[(k+1)3k3]=k=1n(3k2+3k+1)

左边的求和会产生很多相互抵消的项,只留下 ( (n+1)^3 - 1 )。因此,我们有:

( n + 1 ) 3 − 1 = ∑ k = 1 n ( 3 k 2 + 3 k + 1 ) (n+1)^3 - 1 = \sum_{k=1}^{n} (3k^2 + 3k + 1) (n+1)31=k=1n(3k2+3k+1)

( n + 1 ) 3 − 1 = 3 ∑ k = 1 n k 2 + 3 ∑ k = 1 n k + n (n+1)^3 - 1 = 3 \sum_{k=1}^{n} k^2 + 3 \sum_{k=1}^{n} k + n (n+1)31=3k=1nk2+3k=1nk+n

解出平方和

现在,我们只需要解出 ∑ k = 1 n k 2 \sum_{k=1}^{n} k^2 k=1nk2

∑ k = 1 n k 2 = n ( 2 n 2 + 3 n + 1 ) 6 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum_{k=1}^{n} k^2 = \frac{n(2n^2 + 3n + 1)}{6}=\frac{n(n+1)(2n+1)}{6} k=1nk2=6n(2n2+3n+1)=6n(n+1)(2n+1)


二. 推导 1 3 + 2 3 + … + n 3 1^3 + 2^3 + \ldots + n^3 13+23++n3 的求和公式

初始等式

我们从考虑以下等式开始:

( k + 1 ) 4 − k 4 = 4 k 3 + 6 k 2 + 4 k + 1 (k+1)^4 - k^4 = 4k^3 + 6k^2 + 4k + 1 (k+1)4k4=4k3+6k2+4k+1

这个等式可以通过简单地展开左边的表达式得到。接下来,我们对 k = 1 , 2 , … , n k = 1, 2, \ldots, n k=1,2,,n 应用这个等式,并将所有这些等式相加。这给我们:

∑ k = 1 n [ ( k + 1 ) 4 − k 4 ] = ∑ k = 1 n [ 4 k 3 + 6 k 2 + 4 k + 1 ] \sum_{k=1}^{n} \left[ (k+1)^4 - k^4 \right] = \sum_{k=1}^{n} \left[ 4k^3 + 6k^2 + 4k + 1 \right] k=1n[(k+1)4k4]=k=1n[4k3+6k2+4k+1]

简化等式

注意,左边的许多项会相互抵消,只留下 ( n + 1 ) 4 − 1 (n+1)^4 - 1 (n+1)41。因此,我们的等式变为:

( n + 1 ) 4 − 1 = 4 ∑ k = 1 n k 3 + 6 ∑ k = 1 n k 2 + 4 ∑ k = 1 n k + n (n+1)^4 - 1 = 4 \sum_{k=1}^{n} k^3 + 6 \sum_{k=1}^{n} k^2 + 4 \sum_{k=1}^{n} k + n (n+1)41=4k=1nk3+6k=1nk2+4k=1nk+n

我们知道:

  • ∑ k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} k=1nk2=6n(n+1)(2n+1)
  • ∑ k = 1 n k = n ( n + 1 ) 2 \sum_{k=1}^{n} k = \frac{n(n+1)}{2} k=1nk=2n(n+1)

将这些已知的和代入上面的等式,就可以解出 ∑ k = 1 n k 3 \sum_{k=1}^{n} k^3 k=1nk3

解出立方和

我们的目标是解出 ∑ k = 1 n k 3 \sum_{k=1}^{n} k^3 k=1nk3。将上述已知和代入并简化等式,我们得到:

n 4 + 4 n 3 + 6 n 2 + 4 n = 4 ∑ k = 1 n k 3 + n ( n + 1 ) ( 2 n + 1 ) + 2 n ( n + 1 ) + n n^4 + 4n^3 + 6n^2 + 4n = 4 \sum_{k=1}^{n} k^3 + n(n+1)(2n+1) + 2n(n+1) + n n4+4n3+6n2+4n=4k=1nk3+n(n+1)(2n+1)+2n(n+1)+n

解得:
∑ k = 1 n k 3 = [ n ( n + 1 ) 2 ] 2 \sum_{k=1}^{n} k^3 = [\frac{n(n+1)}{2}]^2 k=1nk3=[2n(n+1)]2

三.应试向思考:这种多项式计算怎样比较好地避免错误

  • 从小学到大学,因为计算失误导致的考试失分数不胜数

  • 做这种计算主要有这些错误

    • 乘法分配律的时候漏项
    • 次数不同的加减到一起,算串了
    • 草稿纸写的太丑,导致看不清自己写的错误而看错数字😅
    • 上来就抄错题
    • and so on
  • 比较可控的是前两个

  • 对策是次数相同的竖着写到一起、列表

  • 例如:计算 ( 2 x 3 − x + 4 ) ( 3 x 2 + 2 x − 1 ) (2x^3 - x + 4)(3x^2 + 2x - 1) (2x3x+4)(3x2+2x1)

    1. 使用表格法:这样肯定不会漏项

      3 x 2 3x^2 3x2 2 x 2x 2x − 1 -1 1
      2 x 3 2x^3 2x3 6 x 5 6x^5 6x5 4 x 4 4x^4 4x4 − 2 x 3 -2x^3 2x3
      − x -x x − 3 x 3 -3x^3 3x3 − 2 x 2 -2x^2 2x2 x x x
      4 4 4 12 x 2 12x^2 12x2 8 x 8x 8x − 4 -4 4
    2. 合并同类项

      • 从表格中提取并加起每列的结果: 6 x 5 + 4 x 4 + ( − 2 x 3 − 3 x 3 ) + ( 12 x 2 − 2 x 2 ) + ( 8 x + x ) − 4 6x^5 + 4x^4 + (-2x^3 - 3x^3) + (12x^2 - 2x^2) + (8x + x) - 4 6x5+4x4+(2x33x3)+(12x22x2)+(8x+x)4
    3. 简化结果
      6 x 5 + 4 x 4 − 5 x 3 + 10 x 2 + 9 x − 4 6x^5 + 4x^4 - 5x^3 + 10x^2 + 9x - 4 6x5+4x45x3+10x2+9x4

  • 例如:简化 4 x 4 + 3 x 3 − 2 x 2 + 5 x − 1 + 2 x 4 − x 3 + x 2 − 3 x + 4 4x^4 + 3x^3 - 2x^2 + 5x - 1 + 2x^4 - x^3 + x^2 - 3x + 4 4x4+3x32x2+5x1+2x4x3+x23x+4

    1. 次数相同的竖着写到一起

      四次项三次项二次项一次项常数项
      4 x 4 4x^4 4x4 3 x 3 3x^3 3x3 − 2 x 2 -2x^2 2x2 5 x 5x 5x-1
      2 x 4 2x^4 2x4 − x 3 -x^3 x3 x 2 x^2 x2 − 3 x -3x 3x4
    2. 合并同类项

      • ( 4 x 4 + 2 x 4 ) + ( 3 x 3 − x 3 ) + ( − 2 x 2 + x 2 ) + ( 5 x − 3 x ) + ( − 1 + 4 ) (4x^4 + 2x^4) + (3x^3 - x^3) + (-2x^2 + x^2) + (5x - 3x) + (-1 + 4) (4x4+2x4)+(3x3x3)+(2x2+x2)+(5x3x)+(1+4)
    3. 简化结果

      • 6 x 4 + 2 x 3 − x 2 + 2 x + 3 6x^4 + 2x^3 - x^2 + 2x + 3 6x4+2x3x2+2x+3

四.考研常用数列和

∑ k = 1 n k = 1 + 2 + 3 + ⋯ + n = n ( n + 1 ) 2 ∑ k = 1 n k 2 = 1 2 + 2 2 + 3 2 + ⋯ + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 ∑ k = 1 n 1 k ( k + 1 ) = 1 1 × 2 + 1 2 × 3 + 1 3 × 4 + ⋯ + 1 n ( n + 1 ) = n n + 1 1 3 + 2 3 + 3 3 + ⋯ + n 3 = [ 1 2 n ( n + 1 ) ] 2 1 ⋅ 2 + 2 ⋅ 3 + ⋯ + n ( n + 1 ) = 1 3 n ( n + 1 ) ( n + 2 ) \begin{array}{|l|}\\\hline\sum_{k=1}^{n} k=1+2+3+\cdots+n=\frac{n(n+1)}{2} \\\\\hline\sum_{k=1}^{n} k^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \\\\\hline\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1} \\\\\hline 1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left[\frac{1}{2} n(n+1)\right]^{2} \\\\\hline 1 \cdot 2+2 \cdot 3+\cdots+n(n+1)=\frac{1}{3} n(n+1)(n+2) \\\\\hline\\\end{array} k=1nk=1+2+3++n=2n(n+1)k=1nk2=12+22+32++n2=6n(n+1)(2n+1)k=1nk(k+1)1=1×21+2×31+3×41++n(n+1)1=n+1n13+23+33++n3=[21n(n+1)]212+23++n(n+1)=31n(n+1)(n+2)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值