机器学习实战
masiro_zhao
这个作者很懒,什么都没留下…
展开
-
机器学习实战第一章 机器学习基础
# 加载numpy包from numpy import *# 建立4 * 4 的随机数组random.rand(4,4)array([[0.87265983, 0.6030731 , 0.28037338, 0.00612305], [0.50537515, 0.72621643, 0.0555965 , 0.62197328], [0.71163856, ...原创 2019-03-09 18:58:00 · 153 阅读 · 0 评论 -
机器学习实战第二章 k-近邻算法
2.1 KNN算法概述KNN原理1 计算需预测的数据与已知数据集中数据之间的距离2 对距离进行排序3 取前k个距离,并找到对应的label4 对前k个距离对应的label进行计数,数最多的即为这个这个需被预测数据的label2.1.1 导入数据import numpy as npimport operatordef createDataSet(): group = np...原创 2019-03-11 22:08:35 · 218 阅读 · 0 评论 -
机器学习实战第三章 决策树
3.1 决策树的构造关于图示判断模块->长方形终止模块->椭圆形可到达另一个判断模块或终止模块->分支优缺点优点:复杂度低,对中间值的缺失不敏感,可以处理不相关特征数据;使不熟悉的数据集合,总结出一条规律缺点:过拟合适用数据类型:数值型和标称型划分数据分分类选择特征划分数据分类,需找到决定性特征:若某分支下的数据属于同一类型,则已正确的划分数据分类,无需进...原创 2019-05-17 16:20:41 · 252 阅读 · 0 评论 -
机器学习实战第四章 朴素贝叶斯
4.1 基于贝叶斯决策理论的分类方法朴素贝叶斯大致思想:分类器有时会产生错误结果,此时可以要求分类器给出一个最优的类别猜想结果,同时给出这个猜测的概率估计值。算法优缺点优点:数据较少时依然有效缺点:对于输入数据的准备方式较敏感使用数据类型:标称型数据和数值型数据标称型:一般在有限的数据中取,而且只存在‘是’和‘否’两种不同的结果(一般用于分类)数值型:可以在无限的数据中取,而且数值比...原创 2019-07-17 17:13:20 · 736 阅读 · 0 评论