机器学习实战第二章 k-近邻算法

2.1 KNN算法概述

KNN原理

1 计算需预测的数据与已知数据集中数据之间的距离

2 对距离进行排序

3 取前k个距离,并找到对应的label

4 对前k个距离对应的label进行计数,数最多的即为这个这个需被预测数据的label

2.1.1 导入数据

import numpy as np
import operator
def createDataSet():
    group = np.array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group,labels

2.1.2实施KNN算法

def classify0(inX,dataSet,labels,k):
    dataSetSize = dataSet.shape[0] #此处为行数  ex : (4,2) 4行 2列
    diffMat = np.tile(inX,(dataSetSize,1)) - dataSet #在列方向上重复inX dataSetSize行,1列
    sqDiffMat = diffMat** 2 #两矩阵内的值的差,的平方 ex : (Xa0 - Xb0)**2 
    sqDistances = sqDiffMat.sum(axis=1) # axis = 1 矩阵的每一行里的值相加  axis = 0 矩阵的每一列里的值相加 (Xa0 - Xb0)**2 + (Xa1 - Xb1)**2 + ...
    distances = sqDistances ** 0.5 
    sortedDistIndices = distances.argsort() # 把算出来的距离从小到大排序,新矩阵数值大小的排名,值为原矩阵数值得indice
    classCount = {
   }
    for i in range(k):
        voteIlabel = labels[sortedDistIndices[i]] #把前k个距离对应的label找出来
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 # 对label计数
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) #把label计数的字典排序 从高到低
    return sortedClassCount[0][0] #返回第一个
group,labels = createDataSet()
# 预测[0,0] 属于哪一类
classify0([0,0],group,labels,3)
'B'

2.2 示例:使用KNN算法提高约会网站的配对效果

数据源名称:datingTestSet.txt,datingTestSet2.txt

数据源地址:

https://github.com/pbharrin/machinelearninginaction/blob/master/Ch02/datingTestSet.txt

https://github.com/pbharrin/machinelearninginaction/blob/master/Ch02/datingTestSet2.txt

2.2.1 准备数据:从文本文件中解析数据

def file2matrix(filename):
    label = ['didntLike','smallDoses','largeDoses']
    fr = open(filename)
    arrayOLines = fr.readlines()
    numberOfLines = len(arrayOLines)
    returnMat = np.zeros((numberOfLines,3)) # 形成numberOfLines行,3列的数组,数组内每个值都为0
    classLabelVector = []
    index = 0
    for line in arrayOLines 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值