2.1 KNN算法概述
KNN原理
1 计算需预测的数据与已知数据集中数据之间的距离
2 对距离进行排序
3 取前k个距离,并找到对应的label
4 对前k个距离对应的label进行计数,数最多的即为这个这个需被预测数据的label
2.1.1 导入数据
import numpy as np
import operator
def createDataSet():
group = np.array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group,labels
2.1.2实施KNN算法
def classify0(inX,dataSet,labels,k):
dataSetSize = dataSet.shape[0] #此处为行数 ex : (4,2) 4行 2列
diffMat = np.tile(inX,(dataSetSize,1)) - dataSet #在列方向上重复inX dataSetSize行,1列
sqDiffMat = diffMat** 2 #两矩阵内的值的差,的平方 ex : (Xa0 - Xb0)**2
sqDistances = sqDiffMat.sum(axis=1) # axis = 1 矩阵的每一行里的值相加 axis = 0 矩阵的每一列里的值相加 (Xa0 - Xb0)**2 + (Xa1 - Xb1)**2 + ...
distances = sqDistances ** 0.5
sortedDistIndices = distances.argsort() # 把算出来的距离从小到大排序,新矩阵数值大小的排名,值为原矩阵数值得indice
classCount = {
}
for i in range(k):
voteIlabel = labels[sortedDistIndices[i]] #把前k个距离对应的label找出来
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 # 对label计数
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) #把label计数的字典排序 从高到低
return sortedClassCount[0][0] #返回第一个
group,labels = createDataSet()
# 预测[0,0] 属于哪一类
classify0([0,0],group,labels,3)
'B'
2.2 示例:使用KNN算法提高约会网站的配对效果
数据源名称:datingTestSet.txt,datingTestSet2.txt
数据源地址:
https://github.com/pbharrin/machinelearninginaction/blob/master/Ch02/datingTestSet.txt
https://github.com/pbharrin/machinelearninginaction/blob/master/Ch02/datingTestSet2.txt
2.2.1 准备数据:从文本文件中解析数据
def file2matrix(filename):
label = ['didntLike','smallDoses','largeDoses']
fr = open(filename)
arrayOLines = fr.readlines()
numberOfLines = len(arrayOLines)
returnMat = np.zeros((numberOfLines,3)) # 形成numberOfLines行,3列的数组,数组内每个值都为0
classLabelVector = []
index = 0
for line in arrayOLines