**
01背包问题 动态规划
**
1.动态规划
什么是动态规划?动态规划就是将一个大问题不断向下拆分成小问题,直到拆分出的小问题可以求出其解,然后将小问题的解不断的向上合并,最终得到大问题的解决方案。
2.01背包问题
一个旅行者有一个最多能装m公斤的背包,现在有n中物品,每件的重量分别是W1、W2、……、Wn,每件物品的价值分别为C1、C2、……、Cn, 需要将物品放入背包中,要怎么样放才能保证背包中物品的总价值最大?
3.简单思路
1.01背包问题与背包问题的区别在于,01背包,物品的选择只有两种一种是拿,另一种是不拿,而背包问题在于,物品可以只取一部分。所以01背包问题不能用贪心算法解决。
2.以dp[i][j]表示用i种物品,重量为j表示所取得的价值。
3.对于第i种物品,如果第i种物品重量大于j,就证明第i种物品肯定不能取,这时的dp[i][j]=dp[i-1][j]
4.如果第i种物品重量小于j,那就会出现两种情况,采用i的话,物品价值dp[i][j]=采用前面的i-1种物品,所占用的重量为j-i.getweight,所产生的价值+第i 种物品的价值。如果不采用i,价值为dp[i-1][j]。换成数学表达式就是dp[i][j]=Math.max(dp[i-1][j-weight]+value,dp[i-1][j]);
5.比如当i=5,j=10时,dp[5][10]就代表了所取得的最大价值。到这里我们就完成了任务的一半,接下为我们要寻找到底哪些物品放入了背包,从前面的表达式我们可以发现,当dp[i][j]=dp[i-1][j-weight]时,这时为i的物品就会放入背包,所以我们从结果,开始往回走,遇到这种情况,就说明有物品放入背包,然后物品数减1,重量减去为i的重量,继续,最后就能求出哪 些物品放入背包了。
例题:
1.题目描述:
有如下5种物品,小明的书包最多只能装下8公斤的物品,小明特别贪心,思考怎么选择使自己书包能装下并且得到的价值最大。
物品1:6公斤 价值48元
物品2:1公斤 价值7元
物品3:5公斤 价值40元
物品4:2公斤 价值12元
物品5:1公斤 价值8元
2.解题思路:
其实我们正常思维,一般会想,我要尽量装满8公斤,把最大的价值求出来,可是这样的话,就需要用到递归,递归能解出来,只是算法难度高。但是什么是动态规划,动态规划就是逆着来,我要求装8公斤的物品怎么装使得价值最大。我可以先考虑装0公斤,最大价值,再考虑装1公斤最大价值,考虑装2公斤最大价值,装3公斤最大价值,把前面都记录下来。用另外一个temp[i][j]数组记录下来。i呢表示我现在出现的物品的数量,当i循环到最后一个数量的时候就结束了嘛。自己想象一下,我虽然有5件物品,先只给你一件,你判断能不能装下,能装下,那么你就看你装下这件物品,和不装下这件物品哪个价值高,那么记录下来即可。具体填下下面的表试下,真正会填表就差不多了
0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0
6 48 0 0 0 0 0 0 48 48 48
1 7 0 7 7 7 7 7 48 55 55
5 40 0 7 7 7 7 40 48 55 55
2 12 0 7 12 19 19 40 48 55 60
1 8 0 8 15 20 27 40 48 56 63
这个表是怎么来的呢?,举个例子,当我横着一排一排填,因为最开始只掉一件物品,开始掉重量是6的物品,到6的时候就能装下了,所以temp[1][6]=48,另外7,8也只有这一件物品填。所以还是一样的。
接下来掉第二个物品,掉下1这个物品了,1的价值是7,也就是temp[2][1] = 7。后面一直到temp[2][5]都是等于7。 重点重点来了,到了temp[2][6]的时候怎么办呢?我们的当然一看就是,我要选第一件物品,它的价值是48,可是选了第一件物品,背包就满了,就不能装第二件重量为1的物品了,所以temp[2][6] = 48。
我们人可以这样思考,关键就来了,关键就是怎么让计算机也可以这样思考呢,我们就需要用代码。其实仔细想想,我掉第二件物品了,判断如果不能装下,那么temp[2][j] = temp[2][j-1] //记住j表示的是我背包现在最大只能装j这么多,那既然这个物品装不下,那么当然不能装了。如果我当前物品重量小于j,那么我就可以选择是装还是不装呢?只要比较装还是不装哪个价值大就行了。如果不装的话价值这个时候的最大价值是不会变的,因为都不装嘛,也就是,temp[2][j] = temp[2-1][j] 。如果我装的话,关键是这个,还是到刚才的到第二件物品的价值为6的时候考虑,如果我装下重量1这个物品,temp[2][6] = temp[2-1][6 - 这个物品的重量] + 物品的价值 //
其实我 temp[2-1][6-这个物品重量]表示我还没装这个物品之前的价值腾出装这个物品的空间,然后加上这个物品的价值进行比较。关键是之前的每一个状态都用数组给记录下来了。关键代码先看一下,结合代码再理解
for(int i=1;i<6;i++) {
for(int j=1;j<9;j++) {
if(w[i]<=j) {
temp[i][j] = Math.max(temp[i-1][j], temp[i-1][j-w[i]]+v[i]); //其实就是比较物品选还是不选哪种价值大。
}else {
temp[i][j] = temp[i-1][j];//第i件物品不能放
}
}
}
3.代码示例
import java.util.Scanner;
public class knapsack {
static int[] w = new int[6];//每件物品的重量
static int[] v = new int[6];//每件物品的价值
public static void solution(){
int[][] temp = new int[6][9];//8表示背包最多能放8公斤的重量
for(int j = 0;j < 9;j++){//初始化每一行
temp[0][j] = 0;
}
for(int i = 1;i < 6;i++){//背包重量为0时,最大价值肯定是0
temp[i][0] = 0;
}
for(int i = 1;i < 6;i++){//从第一个物品开始选,记录我选了前面出现的物品,背包重量从1-8的能选上的最大值
for(int j = 1;j < 9;j++){//当i循环到最后一层5的时候,也就是得到了,我5件物品都选上的时候的最大值
if(w[i] <= j){//重量比这个状态小,那么就能放。就是放与不放的问题,观察室放重量大还是不放重量大
temp[i][j] = Math.max(temp[i-1][j], temp[i-1][j-w[i]]+v[i]);
}else{
temp[i][j] = temp[i-1][j];//第i件物品不能放
}
}
}
for(int i = 0;i < 6;i++){
for(int j = 0;j < 9;j++){
System.out.print(temp[i][j] + " ");
}
System.out.println();
}
}
public static void main(String[] args) {
System.out.println("请依次输入重量和价值:");
Scanner scn = new Scanner(System.in);
for (int i = 0; i < 6; i++) {
w[i] = scn.nextInt();//输入重量
v[i] = scn.nextInt();//输入价值
}
solution();
}
}