二叉树的前序排列与中序排列可以确定唯一的一颗二叉树。
基本原理:二叉树前序排列是“根结点——>左子树——>右子树”,中序排列是“左子树——根结点——右子树”。如下图所示二叉树:
数字,前序为:1,2,4,5,6,3,7,8,9; 中序为:4,2,5,6,1,7,3,9,8。
字符,前序为:A,B,C,D,E,F,G; 中序为:C,B,E,D,A,F,G。
前序和中序的关联是:前序依次始终可以看作是二叉树的根结点或子树(包括左、右子树)的根结点。所以每个前序的结点,都可以把中序的结点分为:左子树和右子树两部分。如前例中的数字:1为根结点时,在中序中:4,2,5,6即为左子树部分,7,3,9,8即为右子树部分。然后以此类推,当2为子树根结点时,在中序里,4为左子树,5,6为右子树部分……
递归函数由此设计:函数中传入的参数为:前序vector表,中序vector表,以及根据此时的根结点创建的BiTNode结点指针。随着递归的展开,前序表和中序表中的元素因不断提取作为新的子树的根结点,因而也不断减少,直到提取完毕,前序表为空就退出递归了。
以数字为例,先看代码:
template<typename T>
void createBTree(vector<T> preOrder, vector<T> inOrder, BiTNode<T> *root) {
//如果preOrder为空就退出
if (preOrder.size()) {
//根(或子树的根)节点已经创建了BiTNode节点(即参数root),所以在前序里不再需要,删除。
preOrder.erase(preOrder.begin());
//删除第一个元素后,如果preOrder为空就退出
if (preOrder.size()) {
//preOrder第一个值总是可以看作是子树的根结点。
T rootVal = root->d