模糊散布熵Fuzzy dispersion entropy及其多尺度系列(Matlab版)

文章介绍了模糊散布熵及其变体,如多尺度、复合多尺度、精细复合多尺度和时移多尺度模糊散布熵,这些方法在复杂分类和预测问题中作为特征提取工具,可应用于多个领域的信号分析,包括生物医学、电气工程和气象学等。文章提供了相关的Matlab和Python代码资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

熵或复杂性度量区分时间序列类别和理解潜在动态的能力是众所周知的。模糊散布熵(Fuzzy dispersion entropy)是采用一种新颖编码方法来保持子序列的符号表示。该算法非常简单,易于实现,作为特征提取方法可以与机器学习、深度学习结合,解决复杂的分类或预测问题,可用于生物医学、神经科学、电气、交通、气象、能源动力、水利、海洋科学、经济、土木、计算机科学、机械、工业工程等领域时间序列分析和特征提取。

1.模糊散布熵(Fuzzy dispersionEntropy)

2.多尺度模糊散布熵(Multiscale Fuzzydispersion Entropy)

3.复合多尺度模糊散布熵(composite multiscale Fuzzy dispersion entropy)

C M E n=\frac{1}{\tau} \sum_{k=1}^\tau E\left(\mathbf{y}_k^{(\tau)}\right)

4.精细复合多尺度模糊散布熵(refined composite multiscale Fuzzy dispersion entropy)

R C M E n =-\sum_{\pi=1}^c \tilde{P}(\pi) \ln (\tilde{P}(\pi))

\tilde{P} =\frac{1}{\tau} \sum_{k=1}^\tau P_k(t)

5.时移多尺度模糊散布熵(time-shift multiscale Fuzzy dispersion entropy)

6.层次多尺度模糊散布熵(Hierarchical multiscale Fuzzy dispersion entropy)

参考文献

1.M. Rostaghi, M. M. Khatibi, M. R. Ashory, and H.Azami, “Fuzzy Dispersion Entropy: A Nonlinear Measure for Signal Analysis,” IEEETransactions on Fuzzy Systems, vol. 30, no. 9, pp. 3785–3796, Sep. 2022, doi:10.1109/TFUZZ.2021.3128957. 

2.Matlab and python code获取链接: https://www.jianshu.com/p/51880addec2d

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值