引言
大家多多少少听过,看过或使用过一种信号处理方法:变分模态分解方法(Variational mode decomposition,VMD)。该方法于2014年发表在信号处理顶级SCI期刊IEEE transactions on signal processing,至今已有4840多次引用,深受各领域研究者的欢迎。
VMD在一定程度上解决了EMD的模态混叠问题,然而,VMD的性能受到其参数的影响,尤其是惩罚因子alpha和模态分解数k。手动调参是繁琐的、不经济的。研究者们通过设置合理的优化目标函数,利用群智能优化算法对其参数进行自适应的选择。
本期介绍4种用以VMD参数优化的适应度函数:(免费送)
包络熵最小,Envelope entropy
信息熵最小,Information entropy
排列熵最小,Permutation entropy样本熵最小,Sample entropy
一段长度为1024的信号数据作为待分解数据,利用灰狼优化算法GWO优化VMD参数。为了快速验证算法。
Matlab代码下载
微信搜索并关注-优化算法侠,或扫描下方二维码关注,以算法名字搜索历史文章即可下载。
【免费送】VMD的参数优化(2):4种适应度函数(附matlab代码)
340多种基础的群智能优化算法-matlab
175种群智能优化算法python库
求解cec测试函数-matlab
解决12工程设计优化问题-matlab
求解11种cec测试函数-python
解决12种工程设计优化问题-python
用于改进所有优化算法:21种混沌映射方法-混沌初始化(附matlab代码)
沙场大点兵:24种信号分解方法(附matlab代码)
沙场大点兵:27种一维数据转换成二维图像的方法-matlab代码沙场大点兵:27种一维数据转换成二维图像的方法-matlab代码https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486260&idx=1&sn=81b1970cb89364c0289ccdfb403e5388&chksm=c12be731f65c6e273a85456326b503b7f35d9f035405050932ff1926e0b1bfa8076b1bc2d1f2&token=25423484&lang=zh_CN#rd