【matlab代码免费送】基于优化算法的VMD的参数优化:4种适应度函数

 引言

大家多多少少听过,看过或使用过一种信号处理方法:变分模态分解方法(Variational mode decomposition,VMD)。该方法于2014年发表在信号处理顶级SCI期刊IEEE transactions on signal processing,至今已有4840多次引用,深受各领域研究者的欢迎。

图片

VMD在一定程度上解决了EMD的模态混叠问题,然而,VMD的性能受到其参数的影响,尤其是惩罚因子alpha和模态分解数k。手动调参是繁琐的、不经济的。研究者们通过设置合理的优化目标函数,利用群智能优化算法对其参数进行自适应的选择。

本期介绍4种用以VMD参数优化的适应度函数:(免费送

包络熵最小,Envelope entropy信息熵最小,Information entropy排列熵最小,Permutation entropy样本熵最小,Sample entropy

一段长度为1024的信号数据作为待分解数据,利用灰狼优化算法GWO优化VMD参数。为了快速验证算法。

Matlab代码下载

微信搜索并关注-优化算法侠,或扫描下方二维码关注,以算法名字搜索历史文章即可下载。

【免费送】VMD的参数优化(2):4种适应度函数(附matlab代码)

340多种基础的群智能优化算法-matlab

【选择自由,免费下载】超340种基础群智能优化算法-Matlab版(截至2024.03.10)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486247&idx=1&sn=6bbf4a36099f33e84f49234186bbe16c&chksm=c12be722f65c6e343ee235208912a5357af90925d75e3b5e3e676470180ed1b66996b65cda11&token=25423484&lang=zh_CN#rd

175种群智能优化算法python库

超175+种群智能优化算法Python库!!!icon-default.png?t=N7T8http://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247484577&idx=1&sn=ed0b2e27b73e738c094c7534a63a2cda&chksm=c12be8a4f65c61b2f3d90e2b4d1f480f8d0bb038b6598828ebf2434006e07925f8102af9795f&scene=21#wechat_redirect

求解cec测试函数-matlab

最新最火!cec2022测试函数来了(附Matlab代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247484693&idx=1&sn=ce311acb26bee2894db6fe90776288bd&chksm=c12be910f65c6006af080b1e97ad5514eee06b64d2caeeac2008b8c06fdc3ba379455e9ca709&scene=21#wechat_redirect

解决12工程设计优化问题-matlab

略微出手,工程设计问题(12)(附Matlab代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247485052&idx=1&sn=80e5573c1c005ee5640e44935044ee35&chksm=c12bea79f65c636fc73758b4f4893502bd89cbd1c5d15d7db15e8b5c94eeae40450439d44944&token=681266555&lang=zh_CN#rd

求解11种cec测试函数-python

一网打尽!170+种优化算法求解11种cec测试函数(附Python代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247484745&idx=1&sn=1957f7c9b44c47f171c1cd46054d1679&chksm=c12be94cf65c605a5e0f8404e6c90964ce0743b7c25ff5f98a03dedc77e5eec5b48bf0c0e782&token=681266555&lang=zh_CN#rd

解决12种工程设计优化问题-python

大放送!170+种优化算法解决12种工程设计问题(附python代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247485068&idx=1&sn=c913be0f2445f8b4d3e944569f5e599f&chksm=c12bea89f65c639f1df0f8e6cacffc1fdffa96683d10743094435ee6b0b55573a5bc8eec7eb3&token=681266555&lang=zh_CN#rd

用于改进所有优化算法:21种混沌映射方法-混沌初始化(附matlab代码)

用于改进所有优化算法:21种混沌映射方法-混沌初始化(附matlab代码)21种混沌映射方法-混沌初始化,适用于所有优化算法icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486215&idx=2&sn=58f1a69175b0d6431a4c7cdfa114b84d&chksm=c12be702f65c6e14e6bd1ddc33b9cec74991d93303c325853049b7e4afd09039b13083fa79c5&token=25423484&lang=zh_CN#rd

沙场大点兵:24种信号分解方法(附matlab代码) 

沙场大点兵:24种信号分解方法(附matlab代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486001&idx=1&sn=a87c24cb401017a78a90bd1b1439fcb0&chksm=c12be634f65c6f22368b7229a59ac5ef330b89d710c826dbfd1a1c34a02b1dd7e909c7f40d79&token=25423484&lang=zh_CN#rd

 沙场大点兵:27种一维数据转换成二维图像的方法-matlab代码沙场大点兵:27种一维数据转换成二维图像的方法-matlab代码icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486260&idx=1&sn=81b1970cb89364c0289ccdfb403e5388&chksm=c12be731f65c6e273a85456326b503b7f35d9f035405050932ff1926e0b1bfa8076b1bc2d1f2&token=25423484&lang=zh_CN#rd

当然可以!下面是一个使用MATLAB编写的基于鲸鱼优化算法VMD算法的示例代码: ```matlab function [U, omega, alpha] = whale_optimization_vmd(signal, K, alpha, beta, gamma, num_iter) % 初始化鲸鱼位置和速度 num_whales = size(signal, 1); dim = size(signal, 2); position = rand(num_whales, dim); velocity = zeros(num_whales, dim); for iter = 1:num_iter % 计算适应度函数值 fitness = fitness_function(signal, position); % 更新最优解 [best_fitness, best_index] = min(fitness); best_position = position(best_index, :); % 更新速度和位置 a = 2 - iter * ((2) / num_iter); % 更新加速度因子 for i = 1:num_whales for j = 1:dim r1 = rand(); % 随机数1 r2 = rand(); % 随机数2 A = 2 * a * r1 - a; % 更新参数A C = 2 * r2; % 更新参数C l = randi([1, num_whales]); % 随机选择一个鲸鱼 if abs(A) < 1 D = abs(C * best_position(j) - position(i, j)); % 更新距离D position(i, j) = best_position(j) - A * D; % 更新位置 else rand_whale_index = randi([1, num_whales]); % 随机选择另一只鲸鱼 D = abs(C * position(rand_whale_index, j) - position(i, j)); % 更新距离D position(i, j) = position(rand_whale_index, j) - A * D; % 更新位置 end end end % 修复位置超出边界的情况 position(position > 1) = 1; position(position < 0) = 0; % 更新信号分量 U = zeros(K, dim); for k = 1:K omega(k) = alpha * exp(beta * (k - 1)); % 更新调制频率 u_k = signal - U(1:k-1, :); % 计算残差信号 [U_k, ~] = vmd(u_k, omega(k), gamma); % 使用VMD算法分解信号 U(k, :) = U_k(end, :); % 更新信号分量 end % 更新参数alpha alpha = alpha * exp(-gamma * iter); end end function fitness = fitness_function(signal, position) num_whales = size(signal, 1); fitness = zeros(num_whales, 1); for i = 1:num_whales fitness(i) = sum(abs(signal - position(i, :)), 2); % 适应度函数为信号与位置的差值的绝对值之和 end end ``` 这是一个简化的示例代码,其中使用了鲸鱼优化算法优化VMD算法参数。您可以根据自己的需求进行适当的修改和优化。希望对您有帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值