【免费】基于1D-GAN生成对抗网络的数据生成方法(附Matlab代码)

引言

深度神经网络强大的特征表示能力和非线性拟合能力源自于对高质量数据集的充足学习。然而,实际工程应用中,由于经济成本和人力成本的限制,获取大量典型的有标签的数据变得极具挑战,造成了训练样本数量非常有限。数据增强方法为解决此类问题提供了简单但有效的思路。基于深度生成对抗网络(Generative Adversarial Network,GAN)模型的数据增强方法,在学习复杂高维数据分布方面表现出了极其优越的性能,为解决数据问题提供了一个新视角。

GAN网络,全称生成对抗网络(Generative Adversarial Network),是一种深度学习模型,最初由Ian Goodfellow等人在2014年提出。GAN网络主要由两部分组成,即生成器(Generator)和判别器(Discriminator)。生成器的任务是接收随机噪声向量作为输入,并尽可能生成与真实数据相似的样本,而判别器则是一个二分类器,旨在区分输入的样本是来自生成器生成的,还是来自真实数据。

在训练过程中,生成器和判别器通过对抗学习的方式相互博弈,生成器的目标是生成足以欺骗判别器的样本,而判别器的目标则是尽可能准确地判断样本的真实性。这种对抗过程持续进行,直到达到纳什均衡,此时生成器的生成能力足够强大,使得判别器无法有效区分真假样本。

GAN网络在多个领域展现了强大的能力,包括但不限于图像生成、图像风格转换、超分辨率、数据增强、视频生成、自然语言处理、医学图像处理以及游戏与虚拟现实等。

本期分享了基于1D-GAN生成对抗网络的数据生成方法的matlab代码,有效地解决数据不充足的问题。

本期利用机器学习中的经典数据集iris数据集:该数据集有3类,每类50个样本,每个样本4个特征,共150个样本*4个特征利用GAN生成一些数据,并选择用SVM作为分类器(也可以使用其他的分类器)进行分类,用以简单地验证GAN数据的生成质量。生成数据作为训练集用以训练分类器SVM,原始数据作为测试集用以测试。最后结果展示包括了原始数据,和生成数据的分布,概率密度函数分布,每个特征的分布boxplot等。

最后svm的分类精度:训练精度96.5333,测试精度96.667。

图片

结果可视化展示

图片

Matlab代码下载

微信搜索并关注-优化算法侠,或扫描下方二维码关注,以算法名字搜索历史文章即可下载。

基于1D-GAN生成对抗网络的数据生成方法(附Matlab代码)

点击链接跳转:


matlab版的340种基础优化算法免费下载

cec2017测试函数使用教程及matlab代码免费下载

cec2018测试函使用教程及matlab代码免费下载

cec2019测试函使用教程及matlab代码免费下载

cec2020测试函使用教程及matlab代码免费下载

cec2021测试函使用教程及matlab代码免费下载

cec2022测试函使用教程及matlab代码免费下载
绘制cec2017/018/2019/2020/2021/2022函数的三维图像教程,SO EASY!

175种群智能优化算法python库

超175+种群智能优化算法Python库!!!icon-default.png?t=N7T8http://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247484577&idx=1&sn=ed0b2e27b73e738c094c7534a63a2cda&chksm=c12be8a4f65c61b2f3d90e2b4d1f480f8d0bb038b6598828ebf2434006e07925f8102af9795f&scene=21#wechat_redirect

求解cec测试函数-matlab

最新最火!cec2022测试函数来了(附Matlab代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247484693&idx=1&sn=ce311acb26bee2894db6fe90776288bd&chksm=c12be910f65c6006af080b1e97ad5514eee06b64d2caeeac2008b8c06fdc3ba379455e9ca709&scene=21#wechat_redirect

解决12工程设计优化问题-matlab

略微出手,工程设计问题(12)(附Matlab代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247485052&idx=1&sn=80e5573c1c005ee5640e44935044ee35&chksm=c12bea79f65c636fc73758b4f4893502bd89cbd1c5d15d7db15e8b5c94eeae40450439d44944&token=681266555&lang=zh_CN#rd

求解11种cec测试函数-python

一网打尽!170+种优化算法求解11种cec测试函数(附Python代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247484745&idx=1&sn=1957f7c9b44c47f171c1cd46054d1679&chksm=c12be94cf65c605a5e0f8404e6c90964ce0743b7c25ff5f98a03dedc77e5eec5b48bf0c0e782&token=681266555&lang=zh_CN#rd

解决12种工程设计优化问题-python

大放送!170+种优化算法解决12种工程设计问题(附python代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247485068&idx=1&sn=c913be0f2445f8b4d3e944569f5e599f&chksm=c12bea89f65c639f1df0f8e6cacffc1fdffa96683d10743094435ee6b0b55573a5bc8eec7eb3&token=681266555&lang=zh_CN#rd

用于改进所有优化算法:21种混沌映射方法-混沌初始化(附matlab代码)

用于改进所有优化算法:21种混沌映射方法-混沌初始化(附matlab代码)21种混沌映射方法-混沌初始化,适用于所有优化算法icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486215&idx=2&sn=58f1a69175b0d6431a4c7cdfa114b84d&chksm=c12be702f65c6e14e6bd1ddc33b9cec74991d93303c325853049b7e4afd09039b13083fa79c5&token=25423484&lang=zh_CN#rd

沙场大点兵:24种信号分解方法(附matlab代码) 

沙场大点兵:24种信号分解方法(附matlab代码)icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486001&idx=1&sn=a87c24cb401017a78a90bd1b1439fcb0&chksm=c12be634f65c6f22368b7229a59ac5ef330b89d710c826dbfd1a1c34a02b1dd7e909c7f40d79&token=25423484&lang=zh_CN#rd

 沙场大点兵:27种一维数据转换成二维图像的方法-matlab代码沙场大点兵:27种一维数据转换成二维图像的方法-matlab代码icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486260&idx=1&sn=81b1970cb89364c0289ccdfb403e5388&chksm=c12be731f65c6e273a85456326b503b7f35d9f035405050932ff1926e0b1bfa8076b1bc2d1f2&token=25423484&lang=zh_CN#rd

### 关于1D生成对抗网络(1dGAN) #### 概念 生成对抗网络(GAN)是一种用于建模复杂分布的强大工具,其核心在于两个神经网络之间的博弈过程——一个是试图创建逼真数据样本的生成器;另一个是尝试区分真实与伪造样本的判别器。对于特定的一维数据集,比如时间序列或是音频片段等线性结构化信息,则发展出了专门化的变体即1D-GAN[^2]。 这种类型的GAN专注于处理并合成具有单一维度特性的输入向量,在保持原有特性的同时能够创造出新的但又符合统计规律的时间序列表达形式或其他连续型变量集合。 #### 实现 为了实现1D-GAN, 需要构建合适的架构来适应一维数据的特点: - **生成器**: 接受随机噪声作为输入,并输出模拟目标域内实际观测到的概率密度函数形状的一系列数值点。 - **判别器**: 输入既可以是从现实世界采集得到的真实案例也可以是由前述模块制造出来的假象实例; 输出则是一个介于0至1之间表示置信度水平的比例值用来评估给定条目属于哪一类的可能性大小。 下面给出一段简单的MATLAB代码框架用于搭建基础版1D GAN: ```matlab % 定义超参数 latent_dim = 100; n_epochs = 20000; % 构造生成器模型 generator = [ fullyconnectableLayer(latent_dim, 'Name', 'fc1'); reluLayer('Name','relu1'); fullyConnectableLayer(output_size,'Name','out')]; % 创建判别器模型 discriminator = [ fullyConnectableLayer(input_size, 'Name', 'in'); leakyReluLayer(0.2,'Name','lrelu1'); fullyConnectableLayer(1,'Name','score')]; % 训练循环... for epoch=1:n_epochs % ...省略具体细节... end ``` 此段伪代码仅展示了如何定义两者的层结构而不涉及完整的训练逻辑[^1]。 #### 应用 1D-GAN的应用场景广泛存在于多个领域之中,尤其是在那些涉及到长时间跨度记录或者周期性强变化模式识别的任务里表现尤为突出: - **金融预测**:利用历史股价走势来进行未来趋势预估; - **医疗健康监测**:分析心电图(ECG)/脑电波(EEG)信号帮助诊断疾病状态; - **语音合成**:创造自然流畅的人声朗读文本内容; - **物理仿真**:加速计算流体力学(CFD)等问题求解速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值