引言
前期已分享360多种基础优化算法(【关注|收藏】超360种群智能优化算法-Matlab代码免费获取(截至2024.07.15))。根据“没有免费的午餐”,没有一个单一的群体智能优化算法可以解决所有的优化问题,每一个群体智能优化算法都有局限性和限制。所以很多学者根据自身的专业问题需求,对基础优化算法进行了改进和提升,以期获得更为优秀的性能。利用改进策略可以缓解优化算法在大规模优化问题中存在早熟收敛、易陷入局部最优和收敛精度低的缺点。
前期也已分享了多种【仅需一行】系列的改进策略(点击跳转):
【仅需一行】13种变异策略改进所有群智能优化算法(附matlab代码)
【效果突出】优化算法改进策略:21种混沌映射方法-参数混沌化(附matlab代码)
用于改进所有优化算法:21种混沌映射方法-混沌初始化(附matlab代码)
【仅需一行】Nelder‑Mead单纯形法(Nelder‑Mead simplex)
本期继续分享常用的改进策略-10种分布/飞行函数,具体的分布函数如下(如有其他的分布函数,可以后台私信我们哦)。
仅需一行代码,即可改进所有群优化算法,非常好用,小白也会,快来学习吧。
仅需一行代码,即可改进所有群优化算法,非常好用,小白也会,快来学习吧。
关于10种分布函数的理论请阅读相关文献,本期不在赘述。
首先,10种分布函数的编码工作已经帮各位小侠客们写好了,集成在Distributions.m函数中,调用非常方便。Distributions.m函数犹如鼠标,优化算法犹如电脑主机。鼠标即插即用在任何品牌、型号的电脑上,Distributions.m函数仅需要一行代码(即调用API),即插即用在任何优化算法中。
以一区算法-牛顿拉夫逊算法NRBO为示例算法,改进后的算法暂用名m-NRBO,函数m-NRBO.m中给出了具体的改动方式,改动量仅一行,非常好用,极易快速方便扩展到其他算法。在cec2022函数上进行测试,8个常用指标保存在excel中( 最差值worst; 最优值best; 标准差值std; 均值mean; 中值median, Wilcoxon符号秩检验、 Wilcoxon秩和检验、 friedman检验)。
cec2022函数介绍
从下面excel结果、收敛图、箱线图也能看出,m-NRBO改进效果十分客观。
(友情提示:和其他策略配合使用,改进效果会更佳哦)
cec2022结果简要展示
Matlab代码下载
微信搜索并关注-优化算法侠(英文名:Swarm-Opti),或扫描下方二维码关注,以算法名字搜索历史文章即可下载。
必备!10种分布函数,仅需一行可改进所有群优化算法(附matlab代码)
点击链接跳转:
360种群优化算法免费下载-matlab
【关注|收藏】超360种群智能优化算法-Matlab代码免费获取(截至2024.07.15)
求解cec测试函数-matlab
cec2022测试函使用教程及matlab代码免费下载
绘制cec2017/018/2019/2020/2021/2022函数的三维图像教程,SO EASY!