人工智能-损失函数-优化算法:牛顿法的背后原理【二阶泰勒展开】

牛顿法是一种用于求解非线性优化问题的高效算法,其利用目标函数的二阶泰勒展开来寻找极小值点。通过迭代更新,牛顿法能以较快的速度收敛。在每次迭代中,函数在当前估计值附近展开到二阶,然后令一阶导数为0,解出新的估计值。该方法适用于寻找函数的局部最小值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

牛顿法法主要是为了解决非线性优化问题,其收敛速度比梯度下降速度更快。其需要解决的问题可以描述为:对于目标函数f(x),在无约束条件的情况下求它的最小值。

牛顿法的主要思想是:在现有的极小值估计值的附近对f(x)做二阶泰勒展开,进而找到极小点的下一个估计值,反复迭代直到函数的一阶导数小于某个接近0的阀值。

一个函数的泰勒展开式为:

f ( x ) = f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值