算法——LeetCode(接雨水和分发糖果)

接雨水和分发糖果

接雨水是一个月前刷的,分发糖果是昨天的每日一题。两个题目都是困难,刷到分发糖果,我觉得二者有点类似的地方,故做出记录,巩固自己的知识。
这两道题当时做的时候思路都不是很清晰,是复现官方题解做出来的。

题号42 接雨水

题目描述

在这里插入图片描述

解题思路

一个位置所能承载的雨水量,是由它左右两边的高度最小值来决定的,就像木桶效应一样,桶内所能装的水是由最短的那个木板决定的。
我们首先找到一个位置左右两边的最大值,做两次遍历(从左遍历一次和从右遍历一次),之后再两个最大值中选出最小的那个高度作为木桶短边,减去这个位置本身的高度,就是这个位置所能盛水的容量,求和即可。

class Solution {
    public int trap(int[] height) {
        int []left = new int[height.length];
        int []right = new int[height.length];
        if(height.length<3){
            return 0;
        }
        int res = 0;
        left[0] = height[0];
        for(int i=1;i<height.length;i++){
            left[i] = Math.max(height[i],left[i-1]);
        }
        right[height.length-1] = height[height.length-1];
        for(int j=height.length-2;j>=0;j--){
            right[j] = Math.max(height[j],right[j+1]);
            res+=Math.min(left[j],right[j]) - height[j];
        }
        return res;
    }
}

题号135 分发糖果

题目描述

在这里插入图片描述

解题思路

这道题也是需要左右各遍历一次。
我们需要满足的条件是:
(1)第i个人如果得分比前一个人(左边)高,则需要获得的糖果比左边这个人多一个。
(2)第i个人如果得分比后一个(右边)高,则需要获得的糖果比右边这个人多一个。
(3)其余情况下,只需要保证这个人最少有一块糖即可。
通过上述条件我们会得到两个值,一个值是满足左边条件的值,另一个值是满足右边条件的值,我们最终的目的是同时满足左右两边的条件,所要选择这两个值中最大的那个即可。

class Solution {
    public int candy(int[] ratings) {
        int length = ratings.length;
        int []left = new int[length];
        for(int i=0;i<length;i++){
            if(i>0&&ratings[i]>ratings[i-1]){
                left[i] = left[i-1] + 1; 
            }else{
                left[i] = 1;
            }
        }
        int right = 1,res = 0;
        for(int i=length-1;i>=0;i--){
            if(i<length-1&&ratings[i]>ratings[i+1]){
                right++;
            }else{
                right = 1;
            }
            res+=Math.max(left[i],right);
        }
        return res;
    }
}

对于一些问题,需要反复刷,百炼成钢。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值