基于NSGA-II算法的研究和改进

本文分享了作者对NSGA-II算法的改进研究,通过ZDT测试函数对比传统与改进算法在GD和SP指标上的收敛性能。结果显示,改进算法在距离和分布性指标上均有显著优势,特别是在ZDT1-6函数中展现快速收敛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可移步微信个人公众号【羽、千落】查看相关内容

基于NSGA-II算法的研究和改进

在大学的时候学习了有关NSGA2算法的相关知识,对这个颇有兴趣,想着把自己学习的内容都记录下来。同时也是自己第一次开始写博客,想开始自己以后的博客之路,为下班后的业余时间找点事情做

前言

本节内容主要大致说明改进的NSGA-II算法和传统的NSGA-II算法的对比结果。
后续会基于NSGA-II算法的研究和改进的系列文章主要分为以下内容:

  1. 多目标的数学模型和概念
  2. 进化算法
  3. 传统的NSGA2算法
  4. 对传统的NSGA2算法的改进
  5. 实验结果

一、改进的NSGA-II与传统的NSGA-II的结果对比

测试函数为:ZDT1、ZDT2,ZDT3,ZDT4,ZDT6
指标采用:分布性指标(GD)和距离指标(SP)
其他测试参数:(每一个参数的说明后续章节会说明)
参数的说明

下面是测试函数根据 30 次的测试情况,选取两个算法对应的最终距离指标 GD和SP 最小的解, 计算每一代的GD和SP的结果,,画出迭代500次过程中GD和SP的变化,对比两者的收敛速

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值