C++数据结构与算法之:基础排序算法
大家好,我是奋斗的C菌,今天和大家分享我对基本排序算法的理解以及历代优化代码,大家加油!!!
选择排序法:
基本核心代码,使用C++泛型编程
//第一次代码,平均时间复杂度O(n^2),最优时间复杂度O(n^2)
template<typename T>
void SelectionSort(T arr,int n){ //参数arr为数组名,传入数组名则意味传入arr的指针,参数n为数组内元素个数,也可以这样写(T arr[], int n)/(T *arr, int n)
for(int i = 0;i < n;i++){//第一层循环:把每一个元素都要执行遍历.
int MinIndex = i;//暂时的把此次循环的"i"设为最小索引
for(int j = i+1;j < n;j++){//第二层循环:把最小索引与全部元素作比较
if(arr[j]<arr[MinIndex])//如果过程中第j个元素的值比最小索引的值大了->
MinIndex = j; //那么久把这个最小索引置为j
}
swap(arr[i],arr[MinIndex]);//内层循坏出来后,交换最小索引的值到arr[0]上,如此类推~
}
}
插入排序法:
//第一次代码,平均时间复杂度O(n^2),最优时间复杂度O(n^2)
template<typename T>
void InsertionSort(T arr[],int n){//同理
for(int i = 1;i < n;i++){//第一层循环:从第arr[1]个元素开始执行遍历.
for(int j = i;j > 0;j--){//第二层循环:方向进行比较
if(arr[j]<arr[j-1]){//如果后面的值比前面的值小?
swap(arr[j],arr[j-1]);//那就前后交换
}else //如果后面的值比前面大了
break; //退出内循环,从下一个开始遍历
}
}
}
//第二次代码优化,代码简洁化
template<typename T>
void InsertionSort(T arr[],int n){
for(int i = 1;i < n;i++){
for(int j = i;j > 0 && arr[j]<arr[j-1];j--){
swap(arr[j],arr[j-1]);
}
}
}
//第三次代码优化,平均时间复杂度O(n^2),最优时间复杂度O(n)
template<typename T>
void InsertionSort(T arr[],int n){//同理
for(int i = 1;i < n;i++){//第一层循环:从第arr[1]个元素开始执行遍历.
T MinValue = arr[i];//每次循环,把arr[i]设为最小值
int j = NULL;//J保存MinValue的值插入的位置
for(j = i;j > 0 && arr[j-1] > MinValue;j--){//第二层反向循环,前一个值比后一个值大?
arr[j] = arr[j-1];//那就把前值赋值到后值
}
arr[j] = MinValue;//内层循坏结束后的arr[j],就是当前MinValue最合适的插入位置.
}
}
冒泡排序法:
每一个元素一次又一次的遍历,把小的交换到前面,大的放后面.好处是遍历次数比其他基本排序法相对会少一半.
//第一次代码,平均时间复杂度O(n^2),最优时间复杂度O(n^2)
template<typename T>
void BubbleSort(T arr[], int n) {//同理/
int temp = NULL;//定义一个临时储存变量
for (int i = 0; i < n; i++)//同理
{
for (int j = 0; j < n - i - 1; j++)//第二层循环:正向遍历
{
if (arr[j] > arr[j + 1]) {//比较简单,不解析了
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
希尔排序法:
先取一个正整数d1<n,把所有序号相隔d1的数组元素放一组,组内进行直接插入排序;然后取d2<d1,重复上述分组和排序操作;直至di=1,即所有记录放进一个组中排序为止(此方法不稳定,容易出现中间漏排,但是速度快)
//第一次代码,平均时间复杂度O(n^2),最优时间复杂度O(n^2)
template<typename T>
void ShellSort(T arr[], int n) {
int h = 1;
while (h < n / 3)
{
h = 3 * h + 1;
}
while (h >= 1)
{
for (int i = h; i < n; i++)
{
T MinValue = arr[i];
int j = NULL;
for (j = i; j >= h && MinValue < arr[j - h]; j -= h) {
arr[j] = arr[j - h];
}
arr[j] = MinValue;
}
h = h / 3;
}
}