因为资源紧缺,用一台16G内存的虚拟机搭建了整套CDH6.1的大数据环境,全部服务启动后仅剩不到1G的内存了。
测试spark-shell时,在执行RDD的action类操作时总是报Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
网上查了一下前辈们的解决方法,在排除掉安装环境和网络环境后,基本判断可能是因为内存不足,导致无法创建Executor,就没有办法执行job。
首先检查yarn的配置“yarn.scheduler.maximum-allocation-mb”这个参数表示每个container能够申请到的最大内存,一般是集群统一配置,默认是2G。Spark中的executor进程是跑在container中,所以container的最大内存会直接影响到executor的最大可用内存。
其次,我的程序需要申请两个executor,因此两个executor的内容总和不应该超过2G,考虑到executor还会使用384M的JVM之外的内存(executorMemoryOverhead),因此要留出一些安全空间。
最后使用“[hdfs@master ~]$ spark-shell --executor-memory 512M"的指令启动spark-shell,问题解决!
CDH6.1环境下解决Spark内存不足
本文介绍在资源有限的16G内存虚拟机上搭建CDH6.1大数据环境,启动所有服务后内存紧张的问题。通过调整yarn配置及限制executor内存,成功解决Spark-shell执行RDD操作时因资源不足而失败的情况。
346

被折叠的 条评论
为什么被折叠?



