【Day59】代码随想录之动态规划part16——两个字符串的删除操作、编辑距离、编辑距离总结

今天上午的第二弹来了,编辑距离的题目应该是有难度的,但是开冲!!!

今日任务:

  • 583.两个字符串的删除操作
  • 72.编辑距离
  • 编辑距离总结票

题目一:583.两个字符串的删除操作

Leetcode题目:【583.两个字符串的删除操作】

在这里插入图片描述
这个操作步骤其实还是可以用两个数组的最长工作子序列,然后两个数组分别减去公共部分,就是最终操作的步数。

还是按照动规五部曲进行分析:
(1)确定dp数组含义:以i-1为结尾的word1子序列,以j-1为结尾的word2子序列为相同最小操作步数;
(2)确定递推公式:if(word1[i-1] == word[i-2])
如果两个元素相等:dp[i][j] = dp[i-1][j-1];
如果两个元素不等(要删元素了):dp[i][j] = min(dp[i-1][j] + 1, dp[i][j-1] + 1, dp[i-1][i-1] + 2);

在这里插入图片描述
(3)初始化:第一行和第一列都需要进行初始化。
根据dp的定义进行初始化:
dp[0][j] = j(因为word1此时已为空了,所以需操作的步数就是j的个数)
dp[i][0] = i;与上面同理。

(4)遍历顺序:
从左到右,从上到下

(5)打印数组

1.1 方法一:最长公共子序列进行求解

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1));
        int result = 0;
        for(int i = 1; i<=word1.size(); i++){
            for(int j = 1; j<=word2.size(); j++){
                if(word1[i-1] == word2[j-1]){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }else{
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        return word1.size() + word2.size() - 2*dp[word1.size()][word2.size()];
    }
};

题目二:72.编辑距离

Leetcode题目:【72.编辑距离】

在这里插入图片描述

解题思路:就是思考的方式有区别,可以只修改word1,也可只修改word2,然后也可以既修改word1又修改word2。这类问题也是可以采用动规来做的,按照动规五部曲来做:
1、确定dp数组的含义:
以i-1为结尾的word1子序列和以j-1为结尾的word2子序列,最少的操作数使两者相同;
2、确定递推公式:word1[i-1] == word2[j-1]
两个元素相等:dp[i][j] = dp[i-1][j-1];
两元素不相等:增、删、替换(word1增加元素 和word2 删除元素的操作数使相同的)
增加元素(word2中删除操作): dp[i][j] = dp[i][j-1] + 1
删除元素(word1中的删除操作): dp[i][j] = dp[i-1][j] + 1;
替换元素:dp[i][j] = dp[i-1][j-1] + 1;
所以两元素不相等时:dp[i][j] = min(dp[i][j-1] + 1, dp[i-1][j] + 1, dp[i-1][j-1] + 1)
3、初始化:
根据递推公式,需要把第一行和第一列全部初始化掉;
dp[i][0] = i;
dp[0][j] = j;
4、遍历顺序:从左到右,从上到下;
5、打印dp数组。

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1));
        for(int i = 0; i<=word1.size(); i++) dp[i][0] = i;
        for(int j = 0; j<=word2.size(); j++) dp[0][j] = j;
        for(int i = 1; i<=word1.size(); i++){
            for(int j = 1; j<=word2.size(); j++){
                if(word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1];
                else{
                    dp[i][j] = min(dp[i-1][j-1] + 1, min(dp[i][j-1] + 1, dp[i-1][j] + 1));
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};

总结:编辑距离问题总结

编辑距离系列问题,我们大致做了四类题目。解决此类问题的动规五部曲为:
1、确定dp数组的含义:
以i-1为结尾的word1子序列和以j-1为结尾的word2子序列,最少的操作数使两者相同;
2、确定递推公式:
word1[i-1] == word2[j-1]
两个元素相等:******
两元素不相等:***********
3、初始化:
根据递推公式,需要把第一行和第一列全部初始化掉;
4、遍历顺序:
从左到右,从上到下;
5、打印dp数组。

3.1 判断子序列

给定字符串s和字符串t,判断s是否为t的子序列。

if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = dp[i][j - 1];

3.2 不同的子序列

给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。
在这里插入图片描述

3.3 两个字符串的删除操作:

给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最少步数,每步可以删除任意一个字符串中的一个字符。
在这里插入图片描述

3.4 编辑距离:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值