今天上午的第二弹来了,编辑距离的题目应该是有难度的,但是开冲!!!
今日任务:
- 583.两个字符串的删除操作
- 72.编辑距离
- 编辑距离总结票
文章目录
题目一:583.两个字符串的删除操作
Leetcode题目:【583.两个字符串的删除操作】
这个操作步骤其实还是可以用两个数组的最长工作子序列,然后两个数组分别减去公共部分,就是最终操作的步数。
还是按照动规五部曲进行分析:
(1)确定dp数组含义:以i-1为结尾的word1子序列,以j-1为结尾的word2子序列为相同最小操作步数;
(2)确定递推公式:if(word1[i-1] == word[i-2])
如果两个元素相等:dp[i][j] = dp[i-1][j-1];
如果两个元素不等(要删元素了):dp[i][j] = min(dp[i-1][j] + 1, dp[i][j-1] + 1, dp[i-1][i-1] + 2);
(3)初始化:第一行和第一列都需要进行初始化。
根据dp的定义进行初始化:
dp[0][j] = j(因为word1此时已为空了,所以需操作的步数就是j的个数)
dp[i][0] = i;与上面同理。
(4)遍历顺序:
从左到右,从上到下
(5)打印数组
1.1 方法一:最长公共子序列进行求解
class Solution {
public:
int minDistance(string word1, string word2) {
vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1));
int result = 0;
for(int i = 1; i<=word1.size(); i++){
for(int j = 1; j<=word2.size(); j++){
if(word1[i-1] == word2[j-1]){
dp[i][j] = dp[i-1][j-1] + 1;
}else{
dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
}
}
}
return word1.size() + word2.size() - 2*dp[word1.size()][word2.size()];
}
};
题目二:72.编辑距离
Leetcode题目:【72.编辑距离】
解题思路:就是思考的方式有区别,可以只修改word1,也可只修改word2,然后也可以既修改word1又修改word2。这类问题也是可以采用动规来做的,按照动规五部曲来做:
1、确定dp数组的含义:
以i-1为结尾的word1子序列和以j-1为结尾的word2子序列,最少的操作数使两者相同;
2、确定递推公式:word1[i-1] == word2[j-1]
两个元素相等:dp[i][j] = dp[i-1][j-1];
两元素不相等:增、删、替换(word1增加元素 和word2 删除元素的操作数使相同的)
增加元素(word2中删除操作): dp[i][j] = dp[i][j-1] + 1
删除元素(word1中的删除操作): dp[i][j] = dp[i-1][j] + 1;
替换元素:dp[i][j] = dp[i-1][j-1] + 1;
所以两元素不相等时:dp[i][j] = min(dp[i][j-1] + 1, dp[i-1][j] + 1, dp[i-1][j-1] + 1)
3、初始化:
根据递推公式,需要把第一行和第一列全部初始化掉;
dp[i][0] = i;
dp[0][j] = j;
4、遍历顺序:从左到右,从上到下;
5、打印dp数组。
class Solution {
public:
int minDistance(string word1, string word2) {
vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1));
for(int i = 0; i<=word1.size(); i++) dp[i][0] = i;
for(int j = 0; j<=word2.size(); j++) dp[0][j] = j;
for(int i = 1; i<=word1.size(); i++){
for(int j = 1; j<=word2.size(); j++){
if(word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1];
else{
dp[i][j] = min(dp[i-1][j-1] + 1, min(dp[i][j-1] + 1, dp[i-1][j] + 1));
}
}
}
return dp[word1.size()][word2.size()];
}
};
总结:编辑距离问题总结
编辑距离系列问题,我们大致做了四类题目。解决此类问题的动规五部曲为:
1、确定dp数组的含义:
以i-1为结尾的word1子序列和以j-1为结尾的word2子序列,最少的操作数使两者相同;
2、确定递推公式:
word1[i-1] == word2[j-1]
两个元素相等:******
两元素不相等:***********
3、初始化:
根据递推公式,需要把第一行和第一列全部初始化掉;
4、遍历顺序:
从左到右,从上到下;
5、打印dp数组。
3.1 判断子序列
给定字符串s和字符串t,判断s是否为t的子序列。
if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = dp[i][j - 1];
3.2 不同的子序列
给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。
3.3 两个字符串的删除操作:
给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最少步数,每步可以删除任意一个字符串中的一个字符。