机器学习导论

4 篇文章 0 订阅
3 篇文章 0 订阅

1. 机器学习概述

1.1 机器学习的定义

机器学习是一门人工智能的核心分支,它赋予了计算机从数据中自动分析获得模式,并利用模式对未知数据进行预测的能力。机器学习算法通过建立数学模型,从大量数据中"学习"经验,不断优化模型参数,使其逐渐适应现实数据,最终获得"人类难以直接建立"的潜在规则。

更多详情,请搜索公众号:Data200,加入社群沟通。

1.2 机器学习的发展历史

机器学习的思想可以追溯到20世纪50年代"神经网络"的研究,当时简单的神经元模型被提出并能够进行基本的模式识别。20世纪60年代形式化了"概念学习系统"的设计,为监督学习奠定理论基础。20世纪80年代,随着统计学和优化理论的发展,诸如决策树、支持向量机等经典算法先后被提出。

21世纪以来,计算机硬件水平飞速提高、海量数据的积累以及一些新理论和算法的突破(如深度学习),使得机器学习获得了长足发展,应用领域也日益广泛。如今,机器学习已成为人工智能最活跃和最具影响力的分支之一。

1.3 机器学习的应用领域

机器学习由于具有自动建模、数据驱动的特点,可以应用于许多传统数据处理或人工经验累积困难的领域:

  • 计算机视觉:图像分类、目标检测、图像分割等
  • 自然语言处理:语音识别、机器翻译、文本挖掘等
  • 推荐系统:个性化推荐、网页排名等
  • 金融风控:信用评分、欺诈检测等
  • 医疗健康:疾病诊断、药物分析等
  • ...

1.4 机器学习与人工智能、数据挖掘的关系

机器学习是人工智能的一个重要分支,是实现人工智能的主要方法之一。人工智能追求用人工方式实现类人甚至超人的智能,而机器学习则关注如何使计算机具备学习获取新能力的途径。 机器学习与数据挖掘也有密切联系,数据挖掘强调exploratory的分析方法,而机器学习更侧重于predictive modeling。 事实上,机器学习为人工智能和数据挖掘提供了理论基础和实现手段。

2. 机器学习基本概念和分类

2.1 按学习方式分类

常见的机器学习算法按学习方式可分为:

监督学习(Supervised Learning): 算法从给定的训练数据(包含输入特征和标签输出)中学习函数映射规则,以用于新的输入数据预测。常见的监督学习算法有:线性回归、逻辑回归、决策树、支持向量机、神经网络等。 监督学习典型应用有:图像分类、spam检测、住房价格预测等。

非监督学习(Unsupervised Learning): 算法只给予训练数据的输入特征而没有标签输出,需要从数据中自行发现隐藏的模式和规律。常见的非监督学习算法有:聚类、降维、关联规则挖掘等。 非监督学习典型应用有:用户划分、基因分析、异常检测等。

强化学习(Reinforcement Learning): 算法从与环境的交互体验中学习,通过获得的奖励或惩罚信号,自主获取经验,从而获得最优决策序列。强化学习常用于机器人控制、游戏AI等领域。

此外,半监督学习、主动学习等也是重要的机器学习方法。

2.2 按模型形式分类

按模型形式,可分为: 生成模型和判别模型 生成模型(Generative Model)是基于学习训练数据预测联合概率分布的模型,如高斯混合模型(GMM)、朴素贝叶斯模型、 隐马尔可夫模型(HMM)等。 判别模型(Discriminative Model)是直接从训练数据中学习决策函数或条件概率模型,如逻辑回归、线性判别分析、最大熵模型(Maxent)、支持向量机等。 判别模型通常在分类和回归问题上表现更优,而生成模型则在序列建模和从缺失数据中恢复完整数据上具有优势。

2.3 参数模型与非参数模型

参数模型(Parametric Model)是指模型由有限个确定的参数决定,如线性回归。 非参数模型(Non-parametric Model)是指模型结构不依赖于有限个参数,模型复杂度可以随着数据的增加而增长,如K近邻、核方法、决策树等。 参数模型的优点是可解释性强,但由于其结构固定,当问题复杂时容易产生欠拟合。非参数模型则更灵活,但往往需要更多数据,且可解释性较差。

2.4 线性模型与非线性模型

线性模型是指模型对于任意的输入特征,其输出都是输入特征的线性组合,如线性回归、逻辑回归。 非线性模型包括树模型(决策树、随机森林)、神经网络、核方法等,它们对于输入特征有非线性的处理能力,能够处理更复杂的问题。

事实上,机器学习的关键是在获取足够数据的前提下,用恰当复杂度(线性还是非线性)的模型拟合问题,从而平衡偏差(欠拟合)与方差(过拟合)。更多关于偏差-方差权衡的讨论将在后面章节展开。

3. 机器学习工作流程

机器学习系统的建立过程通常遵循以下流程:

3.1 数据收集和数据预处理

首先需要根据问题的需求收集相关数据,通常需要大量高质量、多维度的数据。在获得原始数据后,需要进行数据清洗、去噪、缺失值处理、格式化等数据预处理操作。

3.2 特征工程

特征工程是机器学习的重要环节。合适的数据表示对问题的解决至关重要,需要从原始数据中提取有价值的特征,包括特征构造、特征选择、特征降维等。这需要对问题有深入的领域理解。

3.3 选择模型并进行训练

根据问题的特点和目标,选择适当的机器学习算法或模型,并在训练数据上对模型参数进行学习和优化,得到处理新数据的模型。

3.4 模型评估

在测试数据集上对模型的泛化性能进行评估,常用指标如精度、召回率、F1分数、AUC等。一般需要保留部分数据作为单独的测试集以此评估模型。

3.5 模型调优

根据模型在测试集上的表现,可以通过调整算法的超参数、优化模型结构、添加正则化项等方法对模型进行改进。常用的技术包括网格搜索、交叉验证等。

3.6 模型部署

对于性能良好的模型,就可以将其部署到实际的生产系统或软件产品中,用于解决实际问题,如视觉检测系统、自动驾驶、推荐系统等。

这是一个循环迭代的过程,可以根据评估反馈持续优化模型。实际应用中,上述各阶段往往需要大量的数据处理、特征工程以及领域知识。下面就主流的机器学习算法类型做进一步介绍。

4. 主流机器学习算法

4.1 线性模型

线性模型包括线性回归和逻辑回归,它们都属于经典但高效且可解释性强的算法。

线性回归用于连续值预测问题。其基本思想是,在已知的数据点(自变量x和因变量y)条件下,找到一条最优拟合直线(平面),使所有数据点到直线的残差平方和最小。通过简单的闭式解可以直接求解模型参数。广泛应用于房价预测、销量预测等场景。

逻辑回归用于二分类问题。其通过对数几率(logit)函数将自变量的线性组合映射到(0,1)区间,从而可以将结果解释为概率输出。可以使用梯度下降等优化算法训练模型。常见于广告点击率、肿瘤恶性判断等分类应用。

这两种算法都是稳定且可解释的,但由于其线性本质,无法拟合复杂的问题。

4.2 决策树算法

决策树是一种基于树形结构的监督学习算法。它可以用于分类(ID3、C4.5)和回归(CART)问题。

决策树通过基于特征对数据集进行不断划分,每个节点的数据趋于同类。学习时不断选择最优分割特征,构建一棵最大限度区分样本的树。决策树具有可视化、可解释性强的优点,但也容易过拟合。

随机森林是将多个决策树结合的集成算法,通过随机选择特征并构建决策树集成,以期获得更佳的性能和泛化能力。它在分类和回归任务上都表现卓越,是非常实用的算法。

除了随机森林,Boosting技术如Adaboost、GBDT也可以构建树集成模型,通过迭代训练并组合多棵树,进一步提高预测性能。

树模型易于理解、训练高效,可以处理多种类型数据,且无需复杂的特征工程,是数据挖掘常用的工具。但单棵树易过拟合,且在处理高维数据时可能表现不佳。

4.3 核方法

核方法是一类重要的非线性机器学习算法,包括支持向量机(SVM)、高斯过程(GP)等。通过核技巧,可以学习复杂的、无限维的空间。

SVM是二分类问题中经典有影响力的算法。它试图在保证最小化经验风险的同时,也最大限度地提高了模型的综合泛化能力。SVM通过构建最优分离超平面来完成分类任务,分类效果通常优于传统神经网络和决策树。

SVM可通过软化核函数以学习非线性决策边界。常用的核函数有线性核、多项式核、高斯核等。除分类外,SVM还可以通过回归等价核技巧解决回归估计问题。

GP则是对函数空间进行概率非参数建模的有力工具,在小数据建模、曲线拟合、排序等应用有广泛应用。

核方法能够有效学习高维甚至无限维特征空间,但受限于选择合适核函数和参数调节。随着训练数据的增加,核方法的优势也将减小。

4.4 人工神经网络

借鉴生物神经系统的设计理念,人工神经网络(ANN)以人工神经元为基本单位,构建层级化结构来对函数进行参数学习和模式识别。

最基本的前馈神经网络通过连结多层神经元,可以逼近任意复杂的非线性函数。多层感知器(MLP)就是一种典型的全连接前馈网络,通过反向传播算法对网络进行有监督训练。神经网络在处理复杂的模式时具有优势。

1980年代,卷积神经网络(CNN)通过设计适合图像处理的卷积核和池化层,在计算机视觉领域获得了巨大成功。

循环神经网络(RNN)则对序列数据建模有天然优势,可以有效捕捉序列中的长程依赖关系。基于RNN的 LSTM、GRU等门控循环单元被广泛应用于自然语言处理等领域。

近年来,通过增加网络深度、设计新的网络结构和训练技巧(如Dropout),深度神经网络(DNN)展现出了极强的机器学习能力,在计算机视觉、语音识别、自然语言处理等多个领域取得了突破性进展,推动了人工智能的发展。

4.5 聚类算法

聚类是一种常见的无监督学习方法。通过聚类技术可以在无监督数据中发现潜在的数据组织模式。

K-Means是最经典的聚类算法。它通过不断迭代优化聚类中心的位置,将数据点分配到距离最近的那一个簇。K-Means算法简单高效,但需要预先指定期望的簇数K,且对异常值敏感。

基于密度的算法(如DBSCAN)通过分析数据点邻域的密集程度判定是否属于某个簇,能够很好地发现任意形状的簇。而基于模型的算法(如高斯混合模型GMM)则假设数据服从某种概率分布的混合,由此聚类。

层次聚类算法则通过计算距离将数据点两两归并到同一簇或将一个簇分裂为多个子簇。它能够发现数据的层次结构,但计算开销较大。

总的来说,不同的聚类算法适用于不同的场景和数据类型。聚类分析常应用于客户细分、基因聚类、异常检测等领域。

4.6 降维算法

降维是一种重要的无监督学习技术,可以在保留数据"本质特征"的前提下,将高维数据投影到低维度空间,从而简化后续处理。

主成分分析(PCA)是最常见的无监督降维算法。它通过正交变换将原始特征线性投影到相关度更高的子空间。当原始特征维度较高且存在一定冗余时,PCA可以大幅降低特征维度。

线性判别分析(LDA)则是一种有监督降维技术,其投影后的低维空间能最大化不同类别样本间的散布程度,从而达到更好的分类效果。

除了基于线性变换的传统方法,一些新兴技术如等向核方法(Kernel PCA)、切向嵌入算法(LLE)、t-分布邻域嵌入(t-SNE)等,能够更好地发现数据的非线性低维结构。

值得一提的是,自编码器(AutoEncoder)这种无监督神经网络也可以用于学习数据的紧凑表示,是一种端到端的非线性降维技术。

降维技术在很多场合都有重要应用,如图像、文本等高维数据的压缩、可视化、提取特征等,能够提高机器学习算法的性能和运行效率。

5. 机器学习实战案例分析

为了更好地理解机器学习算法的实践应用,下面将结合具体案例,分领域介绍机器学习在计算机视觉、自然语言处理、推荐系统、金融风控等热点领域的实战应用。

5.1 计算机视觉案例

5.1.1 图像分类 图像分类是计算机视觉中最基础和最具广泛应用价值的任务之一。常用的深度学习模型有AlexNet、VGGNet、GoogLeNet/Inception、ResNet等。以ImageNet图像识别挑战赛为例:

2012年,AlexNet的提出使得深度卷积神经网络第一次在大规模视觉识别任务中超越了传统计算机视觉方法,之后的VGGNet、GoogLeNet等网络不断刷新纪录。

2015年提出的ResNet通过设计残差结构成功训练出了152层的超深网络,大幅提升了分类精度。如今在ImageNet数据集上的分类top-5错误率已经低于3%,接近人类水平。这些深度模型展现出了卓越的图像理解能力。

在实际应用中,如医学诊断的病理切片分类、无人驾驶中的交通标志识别、手写字符识别等,都可以建立在图像分类的基础之上。

5.1.2 目标检测 目标检测不仅需识别出图像中的目标类别,还需精确获取目标的位置信息(通常用边界框表示)。它是实现机器理解图像内容的关键一步。

主流的目标检测算法可分为基于候选区域的两阶段方法(R-CNN、Fast R-CNN、Faster R-CNN)和基于密集预测的一阶段方法(YOLO、SSD)两种范式。

两阶段方法通过先生成候选区域框,再单独对每个区域进行目标分类,可以获得较高的检测精度。而一阶段方法则直接在输入图像上回归目标边界框的位置和类别,速度更快但检测精度相对略低。

除了精度和速度,实时性、鲁棒性等也是目标检测的重要考量因素。目标检测已广泛应用于无人驾驶环境感知、工业缺陷检测、视频监控分析等领域。

5.1.3 其他计算机视觉应用 机器学习在图像分割、3D重建、行为分析、视频描述生成等计算机视觉任务中也有重要应用。例如U-Net、Mask R-CNN等用于医学图像分割;基于3D卷积神经网络的人体姿态和手势估计;结合注意力模型对视频进行文字描述生成等。

计算机视觉是人工智能与真实世界交互的"视觉通道",是无人驾驶、智能安防、辅助医疗等热点场景应用的核心技术之一。随着深度学习理论与硬件条件的进一步发展,计算机视觉将有更广阔的应用前景。

5.2 自然语言处理案例

5.2.1 文本分类 文本分类是将文本数据按照语义主题或情感倾向等标准划分到预定义的类别中,是自然语言处理的一项基础任务。应用于垃圾邮件识别、新闻分类、评论情感分析等场景。

传统的文本分类方法包括基于规则的方法、基于知识库的方法,以及将文本表示为单词袋或n-gram特征的统计学习方法(如朴素贝叶斯、SVM等)。这些方法对文本有一定理解能力,但依赖人工设计的特征提取和文本表示方式。

近年来,神经网络及词向量技术的发展使得深度学习模型(如CNN、RNN、BERT等)在文本分类任务上取得了卓越的性能表现。它们能够自动学习文本的分布式语义表示,减少了人工特征工程的需求。

以评论情感分类为例,基于RNN和注意力机制的深度模型能够较好地捕捉长期语义依赖关系和突出情感关键词,大幅超越了传统方法。预训练语言模型BERT则在多项文本分类任务上树立了新的最佳记录。

5.2.2 机器翻译 机器翻译是自然语言处理中极具挑战的一个重点课题。通过建模源语言和目标语言之间的语义映射关系,实现跨语言的自动翻译。

统计机器翻译(SMT)方法是20世纪80年代兴起的主流技术,它以n-gram为特征,从大量已翻译的双语语料中训练翻译模型和语言模型,再解码得到翻译结果。这种方法易于并行计算,但也存在许多缺陷。

近年来,benefshortfromNMT方法借助序列到序列(Seq2Seq)模型、注意力机制等技术取得重大突破,将翻译问题建模为单个神经网络的最优化过程,有效避免了传统方法中人工特征设计和错误累积的问题。加之大规模并行训练,NMT系统的翻译质量已经超越了SMT系统。

诸如Google神经机器翻译、百度飞桨译等NMT系统,已经在生产环境中为亿万用户提供优质的机器翻译服务。

5.2.3 对话系统 对话系统是自然语言处理的一个前沿应用领域,旨在使机器能够像人一样自然地与人进行对话交流。这是实现真正的人机交互的关键一步。

传统的基于规则和模板的对话系统受到严重的限制,无法做到多轮语境理解和生成自然的对话回复。而现代的对话系统普遍基于从大规模人机对话数据中训练的深度学习模型,如端到端的Seq2Seq模型、层次注意力模型和强化学习等技术。

例如,苹果的Siri助手通过深度学习模型分析用户的自然语言指令,结合知识库、搜索引擎等支持,可以非常自然地回答用户的各种提问。微软的XiaoIce则能基于上下文进行多轮交互对话,并生成有情感化、个性化的响应。

对话系统的能力已经日益强大,但要真正像人一样自然对话仍面临很多挑战,如上下文理解、知识迁移、主动发起对话等,是自然语言处理和人工智能领域的重大课题。

5.3 推荐系统案例

5.3.1 个性化推荐 在信息过载的时代,推荐系统帮助用户高效发现感兴趣的内容和服务。个性化推荐是根据用户的历史行为习惯(如浏览、购买、评分记录)进行个性化建模,为不同用户推荐最符合其偏好的项目。

推荐系统常用的技术有:

  • 协同过滤算法(基于用户的邻域方法、基于项目的邻域方法、基于模型的矩阵分解等)
  • 基于内容的推荐(对用户和项目建模,根据两者语义相似度计算感兴趣程度)
  • 混合推荐(结合协同过滤和基于内容的优点)

深度学习的出现使推荐系统更加智能化,通过自动挖掘更高层次的用户和项目特征表示,克服了传统方法的数据稀疏和冷启动等问题。

以YouTube的视频推荐为例,它利用深度神经网络模型融合用户的历史观看记录、视频元数据、社交网络属性等多源异构数据,为每个用户生成个性化推荐列表,显著提高了视频被点击和持续观看的可能性。

5.3.2 网页排名 搜索引擎的网页排名是一个典型的推荐系统应用场景。传统的网页排名算法主要基于网页内容、超链接拓扑结构等特征,以PageRank、HITS等算法进行网页排序。

而如今的商业搜索引擎更多地采用基于机器学习的排名系统,通过挖掘超大规模的查询日志,构建涵盖上下文、语义、用户行为的特征工程,并使用 LambdaRank、RankNet等学习到排序模型,为用户提供更加智能和个性化的搜索结果排名。

此外,知识图谱、个性化搜索等技术的引入,使搜索引擎更贴近用户真实需求,满足更加复杂的搜索场景,提供更优质的检索和排名服务。

5.4 金融风控案例

5.4.1 信用评分 银行在向个人或企业发放贷款时,需要根据其信用状况进行风险评估,这就是信用评分的应用场景。通过机器学习算法对影响违约可能性的众多特征进行建模,可以自动化地生成信用分数。

传统的评分卡方法需要人工设计合理的评分规则和风险扣分策略。而机器学习则可以从历史数据中自动学习出影响违约的复杂变量关系,构建出更精准的评分模型。常用的方法包括逻辑回归、决策树、神经网络等。

以个人住房抵押贷款为例,评分模型会考虑申请人的工作收入、存款状况、之前的贷款和还款记录、社会关系网络等多方面因素,综合评定违约风险值。银行可根据这个分数决定是否批准贷款申请。

相比人工经验规则,机器学习模型能够更全面地rassess风险,减少审核过程的人为bias,加快审批流程,因此已成为当前主流的信用评分技术。

5.4.2 欺诈检测 诈骗行为无处不在,给企业和个人造成了巨大的经济损失。及时发现和防范欺诈,一直是金融风控的重中之重。

在信用卡欺诈、保险理赔欺诈、网络钓鱼等场景中,常用的欺诈检测手段包括:

  • 基于规则的方法(白名单、黑名单等)
  • 监控异常/离群值
  • 使用机器学习算法(逻辑回归、决策树、隔离森林等)

机器学习算法通过模型化历史已知案例,能够自动挖掘出复杂的欺诈模式和非常规行为。以信用卡欺诈为例,监管模型会关注持卡人的消费模式、位置、时间、金额等维度的异常情况。

部分金融机构还采用群体异常检测算法,将拥有相似特征的交易汇总成组,以发现有组织的欺诈行为。此外,将图神经网络等前沿技术应用于金融反欺诈的研究也在进行中。

通过机器学习和大数据分析手段,银行和金融机构可以较好地防范诈骗风险,提高交易的安全性。未来,欺诈检测系统还将更加智能和动态化。

6. 机器学习的发展趋势

机器学习理论和应用都仍在快速发展之中,面临诸多机遇与挑战。

6.1 数据和计算能力持续提升

大数据时代的到来为机器学习提供了源源不断的新鲜血液。无论是结构化数据还是非结构化数据,规模都在不断增长。同时,云计算、GPU等新型计算硬件的普及,也为训练复杂的深度模型提供了极大助力。可以预见,未来海量优质数据和强大的计算能力将进一步催化机器学习技术的发展。

6.2 算法模型更加深入和智能化

机器学习算法和模型将在深度、广度等方面全面发展。深度学习理论仍在快速更新,如注意力机制、生成对抗网络、越来越深的网络结构等都会带来突破性的进展。另一方面,融合逻辑推理、因果建模、结构化知识等元素,发展出更智能、更可解释的"新人工智能"也是一个重要方向。

6.3 降低机器学习模型的成本和门槛

目前训练复杂模型在算力、数据、模型选择等方面存在较高的门槛。通过自动机器学习、模型压缩、迁移学习等技术的发展,未来训练和部署机器学习模型的成本将大幅降低,并逐渐实现模型在不同领域的快速迁移。从而推动机器学习在更多场景的普及应用。

6.4 人工智能安全与伦理挑战

随着人工智能日渐强大,也出现了一些潜在的安全和伦理挑战,如算法公平性、隐私保护、对抗性攻击等。如何规范人工智能的发展,平衡利弊,仍是一个严峻的课题。相信未来会有更多的法律法规对人工智能算法进行监管。

总之,机器学习正在以前所未有的方式改变着世界,成为推动人工智能飞跃发展的核心动力之一。希望这篇综述有助于读者全面了解机器学习这一不断推进的热门领域。

更多详情,请搜索公众号:Data200,加入社群沟通。

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SuperTech2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值