一本新的机器学习教材

清华大学张旭东教授的新教材《机器学习导论》兼顾传统机器学习与深度学习,内容全面且深入,适合作为入门教材。教材分为基础、传统机器学习和深度学习强化学习三部分,详细讲解了统计优化基础、决策论、分类回归、支持向量机、决策树、集成学习、无监督学习以及深度学习和强化学习的关键算法,适合有一定背景知识的学习者深入理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

春节过后,拿到清华大学张旭东教授新教材《机器学习导论》样书。

这是一本新的机器学习教材,作者在传统机器学习和深度学习方面作了良好的平衡,是一部清晰的、条理性很好的教材,是作者在清华大学电子工程系“机器学习”课程教材实践基础上编著的,内容在深度、新度上取材都适当,是一部不错的机器学习教材。

作者在前言中,将教材分为六部分,我精炼一下可认为分为三部分就可以了。第一部分是基础;第二部分是传统机器学习;第三部分是深度学习和强化学习。

第一部分基础,一章介绍了机器学习的各类概念,一章介绍了机器学习需要的统计和优化基础,把学习机器学习需要的一些基础知识作了介绍,例如概率实例、最大似然原理、贝叶斯原理、信息论基础和优化基础,为缺乏这些基础的读者补一下基础知识,接下来是一章决策论基础。这一部分基本是为比较缺乏相关基础的读者补一补知识。

第二部分包括7章,是传统机器学习的内容:包括分类一章、回归一章,包括了线性回归、基函数回归、稀疏线性回归、逻辑回归、朴素贝叶斯、fisher判别函数等最基本的学习算法,这两章还包含了机器学习理论的概述。然后以三章详细的介绍了:核函数与支持向量机、决策树、集成学习,这三类重要算法的介绍都很详细和深入,还有一些说明性的实例帮助理解算法。第二部分还包括了两章无监督学习,内容有:聚类、em算法和软聚类,主成分分析和独立成分分析等。这一部分的介绍深度似与李航老师“统计学习”的深度差不多。

这本教材与李航老师、周志华老师的教材最大不同,是用了5章的篇幅,介绍了深度学习和强化学习,可看作是国内第二代的机器学习教材。

有三章篇幅介绍了深度学习,其中一章介绍一般全连接神经网络或称为多层感知机(mlp),从目标函数、

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值