C++高级算法之树形DP——如何找树的重心(包看包懂)

本文介绍了如何使用C++进行树形动态规划来求解树的重心问题。通过分析输入输出格式,解释了树的重心定义,并提供了相应的算法分析和代码实现,帮助读者理解这一算法。
摘要由CSDN通过智能技术生成

前言

最近在学树形DP,感触颇多。下面就写出来了。

题目

问题 C(2078): 求树的重心

时间限制: 1 Sec  内存限制: 128 MB

题目描述

树的重心定义为树的某个节点,当去掉该节点后,树的各个连通分量中,节点数最多的连通分量其节点数达到最小值。树可能存在多个重心。如下图,当去掉点1后,树将分成两个连通块:(2,4,5),(3,6,7),则最大的连通块包含节点个数为3。若去掉点2,则树将分成3个部分,(4),(5),(1,3,6,7)最大的连通块包含4个节点;第一种方法可以得到更小的最大联通分量。可以发现,其他方案不可能得到比3更小的值了。所以,点1是树的重心。

输入

输入:第一行一个整数n,表示树的结点个数。(n<100)

接下来n-1行,每行两个数i,j。表示i和j有边相连。

输出

输出:第一行一个整数k,表示重心的个数。

接下来K行,每行一个整数,表示重心。按从小到大的顺序给出。

样例输入

7
1 2
1 3
2 4
2 5
3 6
3 7

样例输出

1
1

 分析</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值