【DFS序_线段树_思维】CF343D. Water Tree

Codeforces Round #200 (Div. 1)D. Water Tree

题意: 

对一棵树有三种操作:

  1. 将以x为根的子树全部置1
  2. 将x置0,并将其祖先结点都置0
  3. 查询以x为根的子树上是不是所有结点都为1

思路:

  1. 首先得到树的dfs序,对dfs序建线段树
  2. 置0操作:将以x为根的这个子树对应的的所有线段树区间都置0。单点更新:将in[x]叶子结点置0,那么pushup上去,所有的祖先结点都是0
  3. 查询操作:判断以x为根的子树上所有结点是不是有0,有0,那它肯定是0. 区间更新[ in[x], out[x] ]
  4. 置1操作:判断以x为根的子树是不是为0,如果为0,那它的父亲结点一定是0,更新它的父亲结点in[ Fa[x] ]为0。然后置1[ in[x], out[x] ]
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#define INF 0x3f3f3f3f
#define lowbit(x) x & (-x)

#define MID (l + r ) >> 1
#define lsn rt << 1
#define rsn rt << 1 | 1
#define Lson lsn, l, mid
#define Rson rsn, mid + 1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define eps  1e-6

using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxN = 5e5 + 5;
inline int read()
{
    int x = 0, f = 1; char c = getchar();
    while(c < '0' || c > '9') { if(c == '-') f = -f; c = getchar(); }
    while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
    return x * f;
}
int n;
struct EDGE{
    int adj, to;
    EDGE(int a = -1, int b = 0): adj(a), to(b) {}
}edge[maxN << 1];
int head[maxN], cnt;
void init()
{
    memset(head, -1, sizeof(head));
    cnt = 0;
}
void add_edge(int u, int v)
{
    edge[cnt] = EDGE(head[u], v);
    head[u] = cnt ++;
}
int F[maxN];
int in[maxN], out[maxN], time;
void dfs(int x, int fa)
{
    in[x] = ++ time;
    F[x] = fa;
    for(int i = head[x]; ~i; i = edge[i].adj)
    {
        if(edge[i].to == fa)
            continue;
        dfs(edge[i].to, x);
    }
    out[x] = time;
}
int tree[maxN << 2];
void pushup(int rt) { tree[rt] = tree[lsn] & tree[rsn]; }
void build_tree(int rt, int l, int r)
{
    tree[rt] = 0;
    if(l == r) return ;
    int mid = MID;
    build_tree(Lson);
    build_tree(Rson);
}
//只有当父亲结点有水时才需要往下推,否则不需要
void pushdown(int rt)
{
    if(tree[rt])
        tree[lsn] = tree[rsn] = tree[rt];
}
//更新时,如果是灌满水,用到子孙结点,就直接下推即可,tree[rt]可充当标记数组
//如果是清空,那么就将叶子结点更新为0,那么再pushup上去,它的祖先结点就都是0
void update(int rt, int l, int r, int ql, int qr, int val)
{
    if(ql <= l && qr >= r)
    {
        tree[rt] = val;
        return;
    }
    pushdown(rt);
    int mid = MID;
    if(ql <= mid) update(QL, val);
    if(qr > mid) update(QR, val);
    pushup(rt);
}
//查询时,只要子树中有一个子孙是0,那它就是0
int query(int rt, int l, int r, int ql, int qr)
{
    if(ql <= l && qr >= r) return tree[rt];
    pushdown(rt);
    int mid = MID;
    int res = 1;
    if(ql <= mid) res = res & query(QL);
    if(qr > mid) res = res & query(QR);
    return res;
}
int main()
{
    init();
    n = read();
    for(int i = 0; i < n - 1; i ++ )
    {
        int u, v; u = read(); v = read();
        add_edge(u, v); add_edge(v, u);
    }
    dfs(1, 0);
    int q; q = read();
    while(q -- )
    {
        int op, x; op = read(); x = read();
        if(op == 1)//填满//它和它的子孙都是1
        {//需要查询这个子树本身是不是0,如果是0,那么更新它的父亲是0
            if(x > 1 && query(1, 1, n, in[x], out[x]) == 0)
                update(1, 1, n, in[F[x]], in[F[x]], 0);
            update(1, 1, n, in[x], out[x], 1);
        }
        else if(op == 2)//清空//它和它的祖先都是0
        {
            update(1, 1, n, in[x], in[x], 0);
        }
        else//查询
        {
            printf("%d\n", query(1, 1, n, in[x], out[x]));
        }
    }
    return 0;
}

 

发布了190 篇原创文章 · 获赞 57 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览