【线性递推求逆元(附证明)】洛谷 P3811 【模板】乘法逆元

线性递推求逆元

设 t = p / i,k = p % i,有:p = i * t + k
即 i * t + k Ξ 0 (mod p)
即 k Ξ - i * t (mod p)
两边同时除以 i * k
有 1 / i Ξ - t / k (mod p)
将k,t带入
有 inv[ i ] Ξ - p / i * inv[ p % i ] (mod p)
为防止有负数,有inv[ i ] = ( p - p / i * inv[ p % i ] % p ) % p

划重点:inv[ i ] = ( p - p / i * inv[ p % i ] % p ) % p
注意:【每个数对于模p的逆元不同】

洛谷 P3811 【模板】乘法逆元

  • exgcd和费马小定理只适合用来求单个逆元,求3e6以内所有的逆元肯定会超时,所以这里要用线性递推求逆元,这样可以保证时间复杂度在O( n )内
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cmath>
#include <cstring>
#include <string>
#include <vector>
#include <set>
#include <stack>
#include <list>
#include <map>
#define INF 0x3f3f3f3f
#define P(x) x>0 ? x : 0
#define MID l + r >> 1
#define lsn rt << 1
#define rsn rt << 1 | 1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define lowbit(x) x & (-x)

using namespace std;
typedef long long ll;
typedef vector<int>:: iterator VITer;
const ll maxN = 3e6 + 5;

ll n, p, inv[maxN];

int main()
{
    while(~scanf("%lld%lld", &n, &p))
    {
        inv[1] = 1; printf("1\n");
        for(ll i = 2 ; i <= n ; i++)
        {
            inv[i] = (p - p / i * inv[ p % i ] % p) % p;
            printf("%lld\n", inv[i]);
        }
    }
    return 0;
}
  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
动态规划是一种常用的解决问题的算法,其核心思想是将一个复杂的问题分解为多个子问题进行解,通过保存之前的状态来减少计算量,从而达到优化算法的目的。动态规划有两种解方式,一种是递推解法,另一种是记忆化搜索法。 递推解法是指从小到大依次计算子问题的解,逐步推导出整个问题的最优解。这种方法需要定义一个状态转移方程,通过状态转移方程来解问题。具体步骤如下: 1. 定义状态:将原问题拆分成若干个子问题,根据子问题定义状态。 2. 定义状态转移方程:根据子问题之间的关系,定义状态转移方程。 3. 确定边界条件:确定最小的子问题的解。 4. 递推解:根据状态转移方程从边界条件出发,逐步计算得到整个问题的解。 下面以斐波那契数列为例,介绍动态规划递推解法的具体实现过程。 假设要斐波那契数列的第n项的值,斐波那契数列的定义如下: f(0) = 0 f(1) = 1 f(n) = f(n-1) + f(n-2) (n>=2) 1. 定义状态 将原问题拆分成若干个子问题,根据子问题定义状态。对于斐波那契数列,我们可以将其拆分成n-1和n-2两个子问题,然后定义状态f(n)表示斐波那契数列的第n项的值。 2. 定义状态转移方程 根据子问题之间的关系,定义状态转移方程。对于斐波那契数列,由于f(n)依赖于f(n-1)和f(n-2),因此可以得到状态转移方程: f(n) = f(n-1) + f(n-2) 3. 确定边界条件 确定最小的子问题的解。对于斐波那契数列,边界条件为f(0)=0和f(1)=1。 4. 递推解 根据状态转移方程从边界条件出发,逐步计算得到整个问题的解。具体实现过程如下: ```python def fibonacci(n): if n == 0: return 0 elif n == 1: return 1 else: f = * (n+1) f = 0 f = 1 for i in range(2, n+1): f[i] = f[i-1] + f[i-2] return f[n] ``` 以上就是动态规划递推解法的具体实现过程。如果您有任何疑问或者其他相关问题,请随时提出。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值