【线性递推求逆元(附证明)】洛谷 P3811 【模板】乘法逆元

线性递推求逆元

设 t = p / i,k = p % i,有:p = i * t + k
即 i * t + k Ξ 0 (mod p)
即 k Ξ - i * t (mod p)
两边同时除以 i * k
有 1 / i Ξ - t / k (mod p)
将k,t带入
有 inv[ i ] Ξ - p / i * inv[ p % i ] (mod p)
为防止有负数,有inv[ i ] = ( p - p / i * inv[ p % i ] % p ) % p

划重点:inv[ i ] = ( p - p / i * inv[ p % i ] % p ) % p
注意:【每个数对于模p的逆元不同】

洛谷 P3811 【模板】乘法逆元

  • exgcd和费马小定理只适合用来求单个逆元,求3e6以内所有的逆元肯定会超时,所以这里要用线性递推求逆元,这样可以保证时间复杂度在O( n )内
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cmath>
#include <cstring>
#include <string>
#include <vector>
#include <set>
#include <stack>
#include <list>
#include <map>
#define INF 0x3f3f3f3f
#define P(x) x>0 ? x : 0
#define MID l + r >> 1
#define lsn rt << 1
#define rsn rt << 1 | 1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define lowbit(x) x & (-x)

using namespace std;
typedef long long ll;
typedef vector<int>:: iterator VITer;
const ll maxN = 3e6 + 5;

ll n, p, inv[maxN];

int main()
{
    while(~scanf("%lld%lld", &n, &p))
    {
        inv[1] = 1; printf("1\n");
        for(ll i = 2 ; i <= n ; i++)
        {
            inv[i] = (p - p / i * inv[ p % i ] % p) % p;
            printf("%lld\n", inv[i]);
        }
    }
    return 0;
}
  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值