拉普兰德的愿望【切比雪夫距离+树状数组】

题目链接

题意:给出n个点的坐标,求曼哈顿距离不小于d的点对数。


我们将坐标① ( x , y ) (x,y) (x,y)变换为② ( x + y , x − y ) (x + y, x - y) (x+y,xy),那么①的曼哈顿距离等于②的切比雪夫距离。

切比雪夫距离 d i s = m a x ( ∣ x 2 − x 1 ∣ , ∣ y 2 − y 1 ∣ ) dis=max(|x_2-x_1|, |y_2-y_1|) dis=max(x2x1,y2y1)

那么对于点 i i i 来说,不合法的点就变成了以 i i i 点为中心,边长为   2 d \ 2d  2d 的正方形内点的个数(不包括边上的)
上述所说的所有的正方形当然会有重合的部分,所以我们可以选择只统计每个正方形的左半边。

我们用树状数组来维护某横坐标区间 ( x − d , x ] (x - d, x] (xd,x]内纵坐标的个数,枚举横坐标x即可。

#include <iostream>
#include <cstdio>
#include <algorithm>
#define lowbit(x) x & (-x)
#define INF 0x3f3f3f3f3f3f
using namespace std;
typedef long long ll;

int read()
{
    int x = 0, f = 1; char c = getchar();
    while (c < '0' || c > '9') { if (c == '-') f = -f; c = getchar(); }
    while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
    return x * f;
}

const int maxN = 200005;

struct node{
    int x, y;
    node() {}
    node(int a, int b): x(a), y(b){}
    friend bool operator < (node n1, node n2) { return n1.x < n2.x; }
}mp[maxN];
int tree[maxN];
int n, d, L;
int up;

void Insert(int pos, int val)
{
    while(pos <= up)
    {
        tree[pos] += val;
        pos += lowbit(pos);
    }
}

int query(int pos)
{
    int ans = 0;
    while(pos > 0)
    {
        ans += tree[pos];
        pos -= lowbit(pos);
    }
    return ans;
}

int main()
{
    n = read(); d = read(); L = read();
    up = 4 * L + 1;
    for(int i = 1; i <= n; ++ i )
    {
        int xx = read(), yy = read();
        mp[i].x = xx + yy + 2 * L + 1, mp[i].y = xx - yy + 2 * L + 1;
    }
    sort(mp + 1, mp + 1 + n);
    int l = 1;
    ll ans = (ll)n * ll(n - 1) / 2ll;
    for(int i = 1; i <= n; ++ i )
    {
        while(l < i && mp[l].x + d <= mp[i].x)
            Insert(mp[l].y, -1), ++ l;
        ans -= ll(query(min(mp[i].y + d - 1, up)) - query(mp[i].y - d));
        Insert(mp[i].y, 1);
    }
    printf("%lld\n", ans);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
牛顿-拉普森迭代算法是一种用于求解逻辑回归的方法。该算法的目标是通过最大化逻辑回归的对数似然函数来找到最优参数。牛顿-拉普森迭代算法结合了牛顿法和拉普拉斯近似的思想。 牛顿-拉普森迭代算法的步骤如下: 1. 初始化参数向量θ为0。 2. 在每次迭代中,计算似然函数的梯度和海塞矩阵。梯度表示函数在某一点的斜率,海塞矩阵表示函数的曲率。 3. 利用海塞矩阵和梯度计算牛顿方向,即在当前位置下降最快的方向。 4. 更新参数向量θ,使其朝着牛顿方向移动一定步长。 5. 重复步骤2-4,直到满足收敛条件。 牛顿-拉普森迭代算法相比于批量梯度下降算法收敛更快,并且通常只需要迭代更少的次数才能达到最小值。然而,一次牛顿-拉普森迭代可能比一次梯度下降代价更高,因为它需要找到并计算一个n x n的海塞矩阵。但是,只要参数维度n不是太大,总体上来说牛顿-拉普森迭代算法仍然更快。 总而言之,牛顿-拉普森迭代算法是一种用于求解逻辑回归的优化算法,它通过最大化对数似然函数来找到最优参数向量θ。该算法结合了牛顿法和拉普拉斯近似的思想,能够更快地收敛到最小值。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [CS229 Part2 分类与逻辑回归](https://blog.csdn.net/u010665216/article/details/77620930)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值