CTDA读书笔记1:Morse引理及Morse函数

CTDA读书笔记1:Morse引理及Morse函数

背景

定义在光滑流形上的光滑函数 f : M → R f : M \rightarrow \mathbb{R} f:MR的临界点为流形上梯度场等于0向量的点。临界点由其hessian矩阵的奇异性分为退化临界点和非退化临界点。实际中重点关注的是非退化临界点,例如定义在 R 2 \mathbb{R}^2 R2上的实值函数 f : R 2 → R f: \mathbb{R}^2 \rightarrow \mathbb{R} f:R2R的非退化临界点包括极大极小值点和鞍点。
在这里插入图片描述

Morse引理描述了非退化临界点邻域特征。(通俗理解就是按邻域特征将函数的非退化临界点分类了)

Morse引理

给定一个定义在光滑m-maniflod M M M上的光滑函数 f : M → R f : M \rightarrow \mathbb{R} f:MR,设 p p p f f f的非退化临界点。在 p p p的邻域 U ( p ) U(p) U(p)中存在一个以 p p p为原点的 m m m维坐标系,使得对 U ( p ) U(p) U(p)中的任意点 x = ( x 1 , x 2 , … , x m ) x = (x_1, x_2, \dots, x_m) x=(x1,x2,,xm)
f ( x ) = f ( p ) − x 1 2 − … x s 2 + x s + 1 2 … x m 2 ,  for some  s ∈ [ 0 , m ] f(x)=f(p)-x_1^2-\ldots x_s^2+x_{s+1}^2 \ldots x_m^2, \quad \text { for some } s \in[0, m] f(x)=f(p)x12xs2+xs+12xm2, for some s[0,m]
上式中负号的个数称为非退化临界点 p p p的index。

特别的,index-0非退化极值点即为极小值点,index-m非退化极值点即为极大值点。剩余的index- ( m − 1 ) (m-1) (m1)个非退化极值点为不同类型的鞍点。

indextype
0minimum
[1, m-1]saddle
mmaximum

Morse函数

Morse函数是一类相当nice的函数,其临界点均为非退化的。
定义( Morse函数):定义在光滑m-maniflod M M M上的光滑函数 f : M → R f : M \rightarrow \mathbb{R} f:MR为Morse函数当且仅当:
(i) f f f的所有临界点都是非退化的;
(ii) f f f的所有临界点有不同的函数值。

参考文献

[1] Dey T K, Wang Y. Computational topology for data analysis[M]. Cambridge University Press, 2022.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值