十三、迭代器、生成器

学习目标

  • 能够写出高级装饰器案例
  • 说出迭代器和生成器的概念
  • 能够自定义可迭代对象
  • 能够使用迭代器和生成器实现基本功能
  • 能够使用property属性修改对象的属性

一、可迭代对象与迭代器

1.1 自定义可迭代对象与迭代器

  • 重写了 __iter__ 方法就是一个 可迭代对象
  • 重写了 __iter__ 与 __next__ 方法就是一个 迭代器对象,所以 迭代器对象 也是一个 可迭代对象
  • 可迭代对象每次迭代(调用 __iter__ 方法)都会生成一个新的迭代器对象,所以 可迭代对象 可以无限制迭代
  • 迭代器的 __iter__ 方法返回的是 self 即迭代器本身,所以 迭代器 仅能使用一次
# 有很多可迭代对象:list/tuple/str/dict/set/range/filter/map
# for ... in 可迭代对象
from collections.abc import Iterable

class Demo(object):
    def __init__(self, x):
        self.x = x
        self.count = 0

    # 重写了 __iter__ 方法就是一个可迭代对象 (使用isinstance为True不用有继承关系) ,也可继承Iterable类,会有重写指示
    def __iter__(self
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Python中的迭代器生成器是一种基于惰性计算的概念,它们可以有效地处理大量的数据或者无限序列。下面我将分别介绍迭代器生成器迭代器(Iterator)是一个实现了迭代协议(Iterator Protocol)的对象。通过调用内置函数 `iter()` 可以将可迭代对象转换为迭代器迭代器对象可以使用内置函数 `next()` 来逐个访问数据元素,直到没有更多的元素可供访问时,会引发 `StopIteration` 异常。例如,可以使用迭代器来遍历列表、元组、集合等容器类型的数据。 生成器(Generator)则是一种特殊的迭代器。它不需要显式地实现迭代协议,而是通过函数中的 `yield` 关键字来实现惰性计算。生成器函数在每次调用时返回一个值,并在下一次调用时从上一次离开的位置继续执行。这样可以节省大量的内存空间,并且提高程序的效率。生成器函数定义时使用 `def` 关键字,并包含至少一个 `yield` 关键字。 下面是一个简单的示例代码,演示了如何使用迭代器生成器: ```python # 使用迭代器遍历列表 my_list = [1, 2, 3, 4, 5] my_iter = iter(my_list) while True: try: item = next(my_iter) print(item) except StopIteration: break # 使用生成器生成斐波那契数列 def fibonacci(): a, b = 0, 1 while True: yield a a, b = b, a + b fib = fibonacci() for i in range(10): print(next(fib)) ``` 希望以上解释能够帮助你理解迭代器生成器的概念。如果有任何进一步的问题,请随时提问!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ModelBulider

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值