数字图像处理 第四章 频率滤波(上)

在这里插入图片描述

一、背景 P124 - 125

  • 傅里叶指出,任何周期函数都可以表示为不同频率的正弦和/或余弦之和的形式,每个正弦项和/或余弦项都乘以不同的系数(现在称为傅里叶级数)
  • 对于非周期函数,也可以正弦和/或余弦乘以加权函数的积分来表示。在这种情况下的公式就是傅里叶变换

二、基本概念 P125 - 130

2.1 复数 P125 - P126

  • 复数
    C = R + j I C = R + jI C=R+jI
  • 极坐标表示复数
    c = ∣ c ∣ ( c o s θ + j s i n θ ) c =\vert{c}\vert(cos\theta + jsin\theta) c=c(cosθ+jsinθ)
  • 欧拉公式
    e j θ = c o s θ + s i n θ e^{j\theta} = cos\theta + sin\theta ejθ=cosθ+sinθ
  • 欧拉公式变换后的极坐标表示复数
    c = ∣ c ∣ e j θ c =\vert{c}\vert e^{j\theta} c=cejθ

2.2 傅里叶级数 P126

f ( t ) = ∑ n = − ∞ ∞ c n e j 2 π n T t f(t) = \displaystyle\sum_{n=-\infty}^\infty c_ne^{j\frac{2\pi n}{T}t} f(t)=n=cnejT2πnt
式中,
c n = 1 T ∫ − T 2 T 2 f ( t ) e − j 2 π n T t d t , n = 0 , ± 1 , ± 2 , ± 3 c_n = \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-j\frac{2\pi n}{T}t}dt,n = 0,\pm1,\pm2,\pm3 cn=T12T2Tf(t)ejT2πntdt,n=0,±1,±2,±3


2.3 冲激及其取样特性 P126 - P128

  • 连续函数的冲激取样
    δ ( t ) = { ∞ , t = 0 0 , t ≠ 0 \delta(t) = \begin{cases} \infty,t = 0\\ 0,t ≠ 0\\ \end{cases} δ(t)={,t=00,t=0
    ∫ − ∞ ∞ δ ( t ) d t = 1 \int_{-\infty}^{\infty}\delta(t)dt = 1 δ(t)dt=1
    ∫ − ∞ ∞ f ( t ) δ ( t ) d t = f ( 0 ) \int_{-\infty}^{\infty}f(t)\delta(t)dt = f(0) f(t)δ(t)dt=f(0)
    ∫ − ∞ ∞ f ( t ) δ ( t − t 0 ) d t = f ( t 0 ) \int_{-\infty}^{\infty}f(t)\delta(t - t_0)dt = f(t_0) f(t)δ(tt0)dt=f(t0)
  • 离散函数的冲激取样
    δ ( x ) = { ∞ , x = 0 0 , x ≠ 0 \delta(x) = \begin{cases} \infty,x = 0\\ 0,x ≠ 0\\ \end{cases} δ(x)={,x=00,x=0
    ∑ x = − ∞ ∞ δ ( x ) = 1 \displaystyle\sum_{x=-\infty}^{\infty}\delta(x) = 1 x=δ(x)=1
    ∑ x = − ∞ ∞ f ( x ) δ ( x ) = f ( 0 ) \displaystyle\sum_{x=-\infty}^{\infty}f(x)\delta(x) = f(0) x=f(x)δ(x)=f(0)
    ∑ x = − ∞ ∞ f ( x ) δ ( x − x 0 ) = f ( x 0 ) \displaystyle\sum_{x=-\infty}^{\infty}f(x)\delta(x - x_0) = f(x_0) x=f(x)δ(xx0)=f(x0)
  • 冲激串
    s △ T ( t ) = ∑ x = − ∞ ∞ δ ( t − n △ T ) s_{\triangle T}(t) = \displaystyle\sum_{x=-\infty}^{\infty}\delta(t-n\triangle T) sT(t)=x=δ(tnT)
    在这里插入图片描述

2.4 连续变量函数的傅里叶变换 P128 - P130

  • f(t)的傅里叶变换(FT)
    F ( μ ) = ℑ { f ( t ) } = ∫ − ∞ ∞ f ( t ) e − j 2 π μ t d t F(\mu) = \Im\{f(t)\} = \int_{-\infty}^{\infty}f(t)e^{-j2\pi \mu t}dt F(μ)={f(t)}=f(t)ej2πμtdt
  • F ( μ ) F(\mu) F(μ)的傅里叶反变换(IFT)
    f ( t ) = ℑ − 1 { F ( μ ) } = ∫ − ∞ ∞ F ( μ ) e j 2 π μ t d μ f(t) = \Im^{-1}\{F(\mu)\} = \int_{-\infty}^{\infty}F(\mu)e^{j2\pi \mu t}d\mu f(t)=1{F(μ)}=F(μ)ej2πμtdμ

2.5 卷积 P130 - P131

  • 卷积公式
    f ( t ) ⊗ h ( t ) = ∫ − ∞ ∞ f ( τ ) h ( t − τ ) d τ f(t)\otimes h(t) = \int_{-\infty}^{\infty}f(\tau)h(t - \tau)d\tau f(t)h(t)=f(τ)h(tτ)dτ
  • (一维)卷积定理
    f ( t ) ⊗ h ( t ) ⇐ ⇒ H ( μ ) F ( μ ) f(t)\otimes h(t) \Leftarrow\Rightarrow H(\mu)F(\mu) f(t)h(t)⇐⇒H(μ)F(μ)
    f ( t ) h ( t ) ⇐ ⇒ H ( μ ) ⊗ F ( μ ) f(t)h(t) \Leftarrow\Rightarrow H(\mu)\otimes F(\mu) f(t)h(t)⇐⇒H(μ)F(μ)

三、取样与取样函数的傅里叶变换 P131 - P137

3.1 取样 P131 - P132

f ~ ( t ) = f ( t ) s △ T ( t ) = ∑ n = − ∞ ∞ f ( t ) δ ( t − n △ T ) \widetilde f(t) = f(t) s_{\triangle T}(t) = \displaystyle\sum_{n=-\infty}^{\infty}f(t)\delta(t - n\triangle T) f (t)=f(t)sT(t)=n=f(t)δ(tnT)
在这里插入图片描述


3.2 取样函数的傅里叶变换 P132 - P133

  • F ~ ( μ ) = ℑ { f ~ ( t ) } = ℑ { f ( t ) s △ T } = F ( μ ) ⊗ S ( μ ) \widetilde F(\mu) = \Im\{\widetilde f(t)\} = \Im\{f(t)s_{\triangle T}\} = F(\mu) \otimes S(\mu) F (μ)={f (t)}={f(t)sT}=F(μ)S(μ)
  • S ( μ ) = 1 △ T ∑ n = − ∞ ∞ δ ( μ − n △ T ) S(\mu) = \frac {1}{\triangle T}\displaystyle\sum_{n=-\infty}^{\infty}\delta(\mu - \frac {n}{\triangle T}) S(μ)=T1n=δ(μTn)
  • F ~ ( μ ) = F ( μ ) ⊗ S ( μ ) = ∫ − ∞ ∞ F ( τ ) S ( μ − τ ) d τ \widetilde F(\mu) = F(\mu) \otimes S(\mu) = \int_{-\infty}^{\infty}F(\tau)S(\mu - \tau)d\tau F (μ)=F(μ)S(μ)=F(τ)S(μτ)dτ
    = 1 △ T ∫ − ∞ ∞ F ( τ ) ∑ n = − ∞ ∞ δ ( μ − τ − n △ T ) d τ = \frac{1}{\triangle T} \int_{-\infty}^{\infty}F(\tau)\displaystyle\sum_{n=-\infty}^{\infty}\delta(\mu - \tau - \frac{n}{\triangle T})d\tau =T1F(τ)n=δ(μτTn)dτ
    = 1 △ T ∑ n = − ∞ ∞ ∫ − ∞ ∞ F ( τ ) δ ( μ − τ − n △ T ) d τ = \frac{1}{\triangle T} \displaystyle\sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty}F(\tau)\delta(\mu - \tau - \frac{n}{\triangle T})d\tau =T1n=F(τ)δ(μτTn)dτ
    = 1 △ T ∑ n = − ∞ ∞ F ( μ − n △ T ) = \frac{1}{\triangle T}\displaystyle\sum_{n=-\infty}^{\infty}F(\mu - \frac{n}{\triangle T}) =T1n=F(μTn)

    取样函数的傅里叶变换结果可以看出,虽然 f ~ ( t ) \widetilde f(t) f (t)是取样后的函数,但其变换 F ~ ( μ ) \widetilde F(\mu) F (μ)是连续的,因为它由 F ( μ ) F(\mu) F(μ) 的几个副本组成,所以 F ( μ ) F(\mu) F(μ) 是一个连续函数。图中 1 △ T \frac{1}{\triangle T} T1 为采样频率
    在这里插入图片描述

3.3 取样定理 P134 - P135

  • 对于以原点为中心的有限区间(带宽) [ − μ m a x , μ m a x ] [-\mu_{max},\mu_{max}] [μmax,μmax] 之外的频率值,其傅里叶变换为 0 的函数f(t)称为 带限函数
    在这里插入图片描述

    1 △ T > 2 μ m a x \frac{1}{\triangle T} > 2\mu_{max} T1>2μmax过采样
    1 △ T = 2 μ m a x \frac{1}{\triangle T} = 2\mu_{max} T1=2μmax临界采样
    1 △ T < 2 μ m a x \frac{1}{\triangle T} < 2\mu_{max} T1<2μmax欠采样

  • 从原理上了解如何从 F ~ ( μ ) \widetilde F(\mu) F (μ) 复原 F ( μ ) F(\mu) F(μ)
    H ( μ ) = { △ T , − μ m a x ≤ μ ≤ μ m a x 0 , o t h e r H(\mu) = \begin{cases} \triangle T,-\mu_{max} \leq \mu \leq \mu_{max} \\ 0,other\\ \end{cases} H(μ)={T,μmaxμμmax0,other
    F ( μ ) = H ( μ ) F ~ ( μ ) F(\mu) = H(\mu)\widetilde F(\mu) F(μ)=H(μ)F (μ)
    f ( t ) = ∫ − ∞ ∞ F ( μ ) e j 2 π μ t d μ f(t) = \int_{-\infty}^{\infty}F(\mu)e^{j2\pi\mu t}d\mu f(t)=F(μ)ej2πμtdμ
    在这里插入图片描述


3.4 混淆 P135 - P137

  • 由于 欠采样 而导致的效果就是频率混淆,或简称为混淆。在图中反映为,连续函数f(t)的高频成分在取样后的函数中被低频"化妆"
    在这里插入图片描述

  • 在实际的取样过程中,混淆总是存在的,尽管原始取样受的函数是带限的,实践中我们必须限制函数的时间,而在我们限制函数的持续时间时,总会引进无限的频率成分

  • 在实践中可以通过平滑输入函数减少高频成分的方法来降低混淆的影响


3.5 由取样后的数据重建(复原)函数 P137 - P138

  • F ( μ ) = H ( μ ) F ~ ( μ ) F(\mu) = H(\mu)\widetilde F(\mu) F(μ)=H(μ)F (μ)
  • f ( t ) = ℑ − 1 { F ( μ ) } = ℑ − 1 { H ( μ ) F ~ ( μ ) } = h ( t ) ⊗ f ~ ( t ) f(t) = \Im^{-1}\{F(\mu)\} = \Im^{-1}\{H(\mu)\widetilde F(\mu)\} = h(t) \otimes \widetilde f(t) f(t)=1{F(μ)}=1{H(μ)F (μ)}=h(t)f (t)
  • f ( t ) = ∑ n = − ∞ ∞ f ( n △ T ) s i n c [ ( t − n △ T ) ] f(t) = \displaystyle\sum_{n=-\infty}^{\infty}f(n\triangle T)sinc[(t - n\triangle T)] f(t)=n=f(nT)sinc[(tnT)]
    ① 取 t = k △ T t = k\triangle T t=kT,k为整数, f ( t ) = f ( k △ T ) f(t) = f(k\triangle T) f(t)=f(kT)。即取样本点的值
    注:sinc(0) = 1,sinc(m) = 0,m为整数
    ② 在各样本点间( t ∈ ( ( k − 1 ) △ T , k △ T ) t \in ((k-1)\triangle T,k\triangle T) t((k1)T,kT))的f(t)值是由 sinc 函数的和形成的内插值

四、单变量的离散傅里叶变换(DFT) P138 - P140

4.1 由取样后的函数的连续变换得到DFT P138 - P140

  • 考虑 F ~ ( μ ) \widetilde F(\mu) F (μ) f ~ ( t ) \widetilde f(t) f (t) 傅里叶变换(FT)得到
    F ~ ( μ ) = ∫ − ∞ ∞ f ~ ( t ) e − j 2 π μ t d t \widetilde F(\mu) = \int_{-\infty}^{\infty}\widetilde f(t)e^{-j2\pi\mu t}dt F (μ)=f (t)ej2πμtdt
  • 代入 f ~ ( t ) = f ( t ) s △ T ( t ) = ∑ n = − ∞ ∞ f ( t ) δ ( t − n △ T ) \widetilde f(t) = f(t) s_{\triangle T}(t) = \displaystyle\sum_{n=-\infty}^{\infty}f(t)\delta(t - n\triangle T) f (t)=f(t)sT(t)=n=f(t)δ(tnT)
    F ~ ( μ ) = ∫ − ∞ ∞ f ~ ( t ) e − j 2 π μ t d t = ∫ − ∞ ∞ ∑ n = ∞ ∞ f ( t ) δ ( t − n △ T ) e − j 2 π μ t d t \widetilde F(\mu) = \int_{-\infty}^{\infty}\widetilde f(t)e^{-j2\pi\mu t}dt = \int_{-\infty}^{\infty} \displaystyle\sum_{n=\infty}^{\infty}f(t)\delta (t-n\triangle T)e^{-j2\pi\mu t}dt F (μ)=f (t)ej2πμtdt=n=f(t)δ(tnT)ej2πμtdt
    = ∑ n = ∞ ∞ ∫ − ∞ ∞ f ( t ) δ ( t − n △ T ) e − j 2 π μ t d t = \displaystyle\sum_{n=\infty}^{\infty}\int_{-\infty}^{\infty} f(t)\delta (t-n\triangle T)e^{-j2\pi\mu t}dt =n=f(t)δ(tnT)ej2πμtdt
    = ∑ n = ∞ ∞ f n e − j 2 π μ n △ T = \displaystyle\sum_{n=\infty}^{\infty}f_ne^{-j2\pi\mu n\triangle T} =n=fnej2πμnT
  • 考虑 F ~ ( μ ) \widetilde F(\mu) F (μ) F ( μ ) F(\mu) F(μ) 副本组成的 周期为 1 △ T \frac{1}{\triangle T} T1无限周期连续函数。在 F ~ ( μ ) \widetilde F(\mu) F (μ) 周期 μ = 0 \mu = 0 μ=0 μ = 1 △ T \mu = \frac{1}{\triangle T} μ=T1 之间取M个等间距样本
    μ = m M △ T , m = 0 , 1 , 2 , . . . , M − 1 \mu = \frac{m}{M\triangle T},m = 0,1,2,...,M - 1 μ=MTm,m=0,1,2,...,M1
  • 离散傅里叶变换及其反变换
    F m = ∑ n = 0 M − 1 f n e − j 2 π m n / M , m = 0 , 1 , 2 , . . . , M − 1 F_m = \sum_{n=0}^{M-1}f_ne^{-j2\pi mn/M},m = 0,1,2,...,M - 1 Fm=n=0M1fnej2πmn/M,m=0,1,2,...,M1
    f n = 1 M ∑ m = 0 M − 1 F m e j 2 π m n / M , n = 0 , 1 , 2 , . . . , M − 1 f_n = \frac{1}{M}\sum_{m=0}^{M-1}F_me^{j2\pi mn/M},n = 0,1,2,...,M-1 fn=M1m=0M1Fmej2πmn/M,n=0,1,2,...,M1
    给定一个由f(t)的M个样本组成的集合 { f n } \{f_n\} {fn},可以得出一个与输入样本集合离散傅里叶变换相对应的M个复离散值的样本 { F m } \{F_m\} {Fm};反之,给定 { F m } \{F_m\} {Fm},可以使用傅里叶反变换(IDFT)复原样本集 { f n } \{f_n\} {fn}
  • 使用 x,u 替换 n,m,得傅里叶变换及其反变换公式
    F ( u ) = ∑ n = 0 M − 1 f ( x ) e − j 2 π u x / M , u = 0 , 1 , 2 , . . . , M − 1 F(u) = \sum_{n=0}^{M-1}f(x)e^{-j2\pi ux/M},u = 0,1,2,...,M - 1 F(u)=n=0M1f(x)ej2πux/M,u=0,1,2,...,M1
    f ( x ) = 1 M ∑ m = 0 M − 1 F ( u ) e j 2 π u x / M , x = 0 , 1 , 2 , . . . , M − 1 f(x) = \frac{1}{M}\sum_{m=0}^{M-1}F(u)e^{j2\pi ux/M},x = 0,1,2,...,M-1 f(x)=M1m=0M1F(u)ej2πux/M,x=0,1,2,...,M1
  • 傅里叶正变换和反变换都是无限周期的,其周期为M,即
    F ( u ) = F ( u + K M ) F(u) = F(u + KM) F(u)=F(u+KM)

    f ( x ) = f ( x + k M ) f(x) = f(x + kM) f(x)=f(x+kM)
    k为整数
  • 卷积的离散表示
    f ( x ) ⊗ h ( x ) = ∑ m = 0 M − 1 f ( m ) h ( x − m ) f(x) \otimes h(x) = \sum_{m=0}^{M-1}f(m)h(x - m) f(x)h(x)=m=0M1f(m)h(xm)
    x = 0,1,2,…,M-1

4.2 取样和频率间隔间的关系 P140

  • T = M △ T T = M\triangle T T=MT
    T:取样时间
    M:取样个数
    △ T \triangle T T:时域取样间隔
  • △ u = 1 M △ T = 1 T \triangle u = \frac{1}{M\triangle T} = \frac{1}{T} u=MT1=T1
    △ u \triangle u u:频率域的取样间隔
  • Ω = M △ u = 1 △ T \Omega = M\triangle u = \frac{1}{\triangle T} Ω=Mu=T1
    Ω \Omega Ω:频率范围
  • DFT 的 频率分辨率 △ u \triangle u u 取决于连续函数f(t)被取样的持续时间 T,并且 DFT 跨越的频率范围 取决于 取样间隔 △ T \triangle T T

五、两个变量的函数的扩展 P141 - P147

5.1 二维冲激及其取样特性 P141 - P142

  • 二维连续函数在 ( t 0 , z 0 ) (t_0,z_0) (t0,z0) 处的冲激
    ∫ − ∞ ∞ ∫ − ∞ ∞ f ( t , z ) δ ( t − t 0 , z − z 0 ) d t d z = f ( t 0 , z 0 ) \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(t,z)\delta (t - t_0,z - z_0)dt dz = f(t_0,z_0) f(t,z)δ(tt0,zz0)dtdz=f(t0,z0)

+ 二维离散函数在 $(x_0,y_0)$ 处的冲激

∑ x = − ∞ ∞ ∑ y = − ∞ ∞ f ( x , y ) δ ( x − x 0 , y − y 0 ) = f ( x 0 , y 0 ) \sum_{x=-\infty}^{\infty}\sum_{y=-\infty}^{\infty}f(x,y)\delta (x - x_0,y - y_0) = f(x_0,y_0) x=y=f(x,y)δ(xx0,yy0)=f(x0,y0)


5.2 二维连续傅里叶变换对 P141 - P142

F ( μ , υ ) = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( t , z ) e − j 2 π ( μ t + υ z ) d t d z F(\mu,\upsilon) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(t,z)e^{-j2\pi (\mu t + \upsilon z)}dt dz F(μ,υ)=f(t,z)ej2π(μt+υz)dtdz

f ( t , z ) = ∫ − ∞ ∞ ∫ − ∞ ∞ F ( μ , υ ) e j 2 π ( μ t + υ z ) d μ d υ f(t,z) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}F(\mu,\upsilon)e^{j2\pi (\mu t + \upsilon z)}d\mu d\upsilon f(t,z)=F(μ,υ)ej2π(μt+υz)dμdυ
在这里插入图片描述


5.3 二维取样和二维取样定理 P142 - P143

  • 二维冲激串:
    s △ T △ Z ( t , z ) = ∑ m = − ∞ ∞ ∑ m = − ∞ ∞ δ ( t − m △ T , z − n △ Z ) s_{\triangle T\triangle Z}(t,z) = \sum_{m=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}\delta (t - m\triangle T,z - n\triangle Z) sTZ(t,z)=m=m=δ(tmT,znZ)
    在这里插入图片描述
  • 取样定理
    1 △ T > 2 μ m a x \frac{1}{\triangle T} > 2\mu_{max} T1>2μmax
    1 △ z > 2 υ m a x \frac{1}{\triangle z} > 2\upsilon_{max} z1>2υmax
    在这里插入图片描述

5.4 图像中的混淆 P143 - P147

  • 在图像中,存在两种主要的混淆现象:空间混淆和时间混淆
    空间混淆是由 欠取样 造成的
    时间混淆与图像序列中图像间的时间间隔有关
  • 图像内插和重取样
  • 莫尔(波纹)模式

5.5 二维离散傅里叶变换及其反变换 P147

  • 二维离散傅里叶变换(DFT):
    F ( u , v ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − 2 π ( u x / M + v y / N ) F(u,v) = \sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{-2\pi (ux / M + vy / N)} F(u,v)=x=0M1y=0N1f(x,y)e2π(ux/M+vy/N)
  • 二维离散傅里叶反变换(IDFT):
    f ( x , y ) = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 F ( u , v ) e 2 π ( u x / M + v y / N ) f(x,y) = \frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}F(u,v)e^{2\pi (ux / M + vy / N)} f(x,y)=MN1u=0M1v=0N1F(u,v)e2π(ux/M+vy/N)
    式中,f(x,y)是大小为 M*N 的数字图像,u = 0,1,2,…,M - 1,v = 0,1,2,…,N - 1

六、二维离散傅里叶变换的一些性质 P148 - P159

6.1 空间频率间隔的关系 P148

△ u = 1 M △ T \triangle u = \frac{1}{M\triangle T} u=MT1
△ v = 1 N △ Z \triangle v = \frac{1}{N\triangle Z} v=NZ1
频率域样本间的间隔与空间样本间的间距及样本数成反比


6.2 平移和旋转 P148

  • 平移
    f ( x , y ) e j 2 π ( u 0 x / M + v 0 / N ) ⇐ ⇒ F ( u − u 0 , v − v 0 ) f(x,y)e^{j2\pi (u_0x / M + v_0 / N)} \Leftarrow \Rightarrow F(u - u_0,v - v_0) f(x,y)ej2π(u0x/M+v0/N)⇐⇒F(uu0,vv0)
    f ( x − x 0 , y − y 0 ) ⇐ ⇒ F ( u , v ) e − j 2 π ( u 0 x / M + v 0 / N ) f(x - x_0,y - y_0) \Leftarrow \Rightarrow F(u,v)e^{-j2\pi (u_0x / M + v_0 / N)} f(xx0,yy0)⇐⇒F(u,v)ej2π(u0x/M+v0/N)
    用指数项乘以f(x,y)将使 DFT 的原点移到点 ( u 0 , v 0 ) (u_0,v_0) (u0,v0);反之,用负指数项乘以 F(u,v) 将使 f(x,y) 的原点移到点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)
  • 旋转
    f(x,y)、F(u,v)使用极坐标表示: x = r c o s θ x = rcos\theta x=rcosθ y = r s i n θ y = rsin\theta y=rsinθ u = ω c o s ϕ u = \omega cos\phi u=ωcosϕ u = ω s i n ϕ u = \omega sin\phi u=ωsinϕ
    f ( r , θ + θ 0 ) ⇐ ⇒ F ( ω , ϕ + ϕ 0 ) f(r,\theta + \theta_0) \Leftarrow \Rightarrow F(\omega,\phi +\phi_0) f(r,θ+θ0)⇐⇒F(ω,ϕ+ϕ0)
    若f(x,y)旋转 θ 0 \theta_0 θ0角度,则 F(u,v) 也旋转相同的角度;反之,若 F(u,v) 旋转一个角度,f(x,y)也旋转相同的角度

6.3 周期性 P148 - P150

  • 二维傅里叶变换及其反变换在 u 方向和 v 方向是无限周期的,即
    F ( u , v ) = F ( u + k 1 M , v ) = F ( u , v + k 2 N ) = F ( u + k 1 M , v + k 2 N ) F(u,v) = F(u + k_1M,v) = F(u,v + k_2N) = F(u + k_1M,v + k_2N) F(u,v)=F(u+k1M,v)=F(u,v+k2N)=F(u+k1M,v+k2N)

    f ( x , y ) = f ( x + k 1 M , y ) = F ( x , y + k 2 N ) = F ( x + k 1 M , y + k 2 N ) f(x,y) = f(x + k_1M,y) = F(x,y + k_2N) = F(x + k_1M,y + k_2N) f(x,y)=f(x+k1M,y)=F(x,y+k2N)=F(x+k1M,y+k2N)
  • 考虑二维离散傅里叶变换的 平移性周期性,使得在 F(u,v) 完整的一个周期内 进行频域的取样
    f ( x , y ) e j 2 π ( u 0 x / M + v 0 / N ) ⇐ ⇒ F ( u − u 0 , v − v 0 ) f(x,y)e^{j2\pi (u_0x / M + v_0 / N)} \Leftarrow \Rightarrow F(u - u_0,v - v_0) f(x,y)ej2π(u0x/M+v0/N)⇐⇒F(uu0,vv0)
    u 0 = M / 2 , v 0 = N / 2 u_0 = M / 2,v_0 = N / 2 u0=M/2v0=N/2,得
    f ( x , y ) ( − 1 ) x + y ⇐ ⇒ F ( u − M / 2 , v − N / 2 ) f(x,y) (-1)^{x + y} \Leftarrow \Rightarrow F(u - M / 2,v - N / 2) f(x,y)(1)x+y⇐⇒F(uM/2,vN/2)
    在这里插入图片描述

6.4 对称性 P150 - P154

在这里插入图片描述


6.5 傅里叶谱与相角 P154 - P156

  • 二维DFT使用极坐标表示
    F ( u , v ) = ∣ F ( u , v ) ∣ e j ϕ ( u , v ) F(u,v) = \vert F(u,v) \vert e^{j\phi(u,v)} F(u,v)=F(u,v)ejϕ(u,v)
    式中,幅度
    ∣ F ( u , v ) ∣ = [ R 2 ( u , v ) + I 2 ( u , v ) ] 1 / 2 \vert F(u,v) \vert = [R^2(u,v) + I^2(u,v)]^{1 / 2} F(u,v)=[R2(u,v)+I2(u,v)]1/2
    称为傅里叶谱(或频谱),而
    ϕ ( u , v ) = a r c t a n [ I ( u , v ) R ( u , v ) ] \phi(u,v) = arctan[\frac{I(u,v)}{R(u,v)}] ϕ(u,v)=arctan[R(u,v)I(u,v)]
    称为 相角
  • 功率谱
    p ( u , v ) = ∣ F ( u , v ) ∣ 2 = R 2 ( u , v ) + I 2 ( u , v ) p(u,v) = \vert F(u,v) \vert ^2 = R^2 (u,v) + I^2 (u,v) p(u,v)=F(u,v)2=R2(u,v)+I2(u,v)
  • 图像的频谱决定了图像的灰度,图像的相角决定了图像中物体定位的信息
  • f(x,y)为 实函数,其傅里叶变换是 共轭对称 的,这表明 谱是关于原点偶对称:
    ∣ F ( u , v ) ∣ = ∣ F ( − u , − v ) ∣ \vert F(u,v) \vert = \vert F(-u,-v) \vert F(u,v)=F(u,v)
    相角关于原点奇对称:
    ϕ ( u , v ) = − ϕ ( − u , − v ) \phi (u,v) = -\phi(-u,-v) ϕ(u,v)=ϕ(u,v)
  • 对于 0 频率项
    F ( 0 , 0 ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) = M N 1 M N ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) = M N f ‾ ( x , y ) F(0,0) = \sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y) = MN\frac{1}{MN}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y) = MN\overline f(x,y) F(0,0)=x=0M1y=0N1f(x,y)=MNMN1x=0M1y=0N1f(x,y)=MNf(x,y)
    ∣ F ( 0 , 0 ) ∣ = M N ∣ f ‾ ( x , y ) ∣ \vert F(0,0) \vert = MN\vert \overline f(x,y) \vert F(0,0)=MNf(x,y)
    由于比例常数MN往往很大, ∣ F ( 0 , 0 ) ∣ \vert F(0,0) \vert F(0,0) 通常是频谱的最大成分,它可能比其他项大几个数量级。因为原点处的 频率成分 u 和 v 是 0,所以F(0,0)有时称为 直流(dc)成分

6.6 二维卷积定理 P157 - P159

  • 二维离散卷积公式
    f ( x , y ) ⊗ h ( x , y ) = ∑ m = 0 M − 1 ∑ n = 0 N − 1 f ( m , n ) h ( x − m , y − n ) f(x,y) \otimes h(x,y) = \sum_{m=0}^{M-1}\sum_{n=0}^{N-1}f(m,n)h(x-m,y-n) f(x,y)h(x,y)=m=0M1n=0N1f(m,n)h(xm,yn)
    式中,x = 0,1,2,…,M-1,y = 0,1,2,…,N-1

  • 二维卷积定理
    f ( x , y ) ⊗ h ( x , y ) ⇐ ⇒ F ( u , v ) H ( u , v ) f(x,y) \otimes h(x,y) \Leftarrow \Rightarrow F(u,v)H(u,v) f(x,y)h(x,y)⇐⇒F(u,v)H(u,v)
    f ( x , y ) h ( x , y ) ⇐ ⇒ F ( u , v ) ⊗ H ( u , v ) f(x,y)h(x,y) \Leftarrow \Rightarrow F(u,v) \otimes H(u,v) f(x,y)h(x,y)⇐⇒F(u,v)H(u,v)

  • 考虑DFT中周期性的空间域函数卷积
    在这里插入图片描述

卷积两个周期函数,卷积本身也是周期的。周期的靠近使它们互相干扰而导致所谓的 缠绕错误

  • 解决缠绕错误的方法
    ① 一维中考虑分别有 A个样本 和 B个样本的两个函数f(x)和h(x),可以证明,如果把0添加到这两个函数中,使它们的长度相同,并用P表示添加后的长度,那么可以按如下方式来选择,以避免缠绕
    P ≥ A + B − 1 P \geq A + B - 1 PA+B1
    ② 二维中解决缠绕错误的方法:
    f p ( x , y ) = { f ( x , y ) , 0 ≤ x ≤ A − 1 和 0 ≤ y ≤ B − 1 0 , A ≤ x ≤ P 或 B ≤ y ≤ Q f_p(x,y) = \begin{cases} f(x,y),0\leq x \leq A-1 和 0 \leq y \leq B-1 \\ 0, A\leq x \leq P 或 B\leq y \leq Q\\ \end{cases} fp(x,y)={f(x,y),0xA10yB10,AxPByQ

    h p ( x , y ) = { h ( x , y ) , 0 ≤ x ≤ C − 1 和 0 ≤ y ≤ D − 1 0 , C ≤ x ≤ P 或 D ≤ y ≤ Q h_p(x,y) = \begin{cases} h(x,y),0\leq x \leq C-1 和 0 \leq y \leq D-1 \\ 0, C\leq x \leq P 或 D\leq y \leq Q\\ \end{cases} hp(x,y)={h(x,y),0xC10yD10,CxPDyQ
    其中,
    P ≥ A + C − 1 P \geq A + C - 1 PA+C1

    Q ≥ B + D − 1 Q \geq B + D - 1 QB+D1
    填充后的图像大小为 PQ 。如果两个阵列大小相同,都为 MN ,则要求
    P ≥ 2 M − 1 P \geq 2M - 1 P2M1
    Q ≥ 2 N − 1 Q \geq 2N - 1 Q2N1
    一般来说,DFT算法对偶数尺寸的阵列执行较快,因此最好将 P 和 Q 选为妈祖上面方程的最小偶整数。若两个阵列大小相同,则取 P = 2M、Q = 2N

6.7 二维离散傅里叶变换性质的小结 P159 - P161

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

本章知识点小结

  • 一维连续傅里叶变换及其反变换
    ① 傅里叶变换(FT):
    F ( μ ) = ℑ { f ( t ) } = ∫ − ∞ ∞ f ( t ) e − j 2 π μ t d t F(\mu) = \Im\{f(t)\} = \int_{-\infty}^{\infty}f(t)e^{-j2\pi \mu t}dt F(μ)={f(t)}=f(t)ej2πμtdt
    ② 傅里叶反变换(IFT):
    f ( t ) = ℑ − 1 { F ( μ ) } = ∫ − ∞ ∞ F ( μ ) e j 2 π μ t d μ f(t) = \Im^{-1}\{F(\mu)\} = \int_{-\infty}^{\infty}F(\mu)e^{j2\pi \mu t}d\mu f(t)=1{F(μ)}=F(μ)ej2πμtdμ
  • 一维离散傅里叶变换及其反变换
    ① 离散傅里叶变换(DFT):
    F ( u ) = ∑ n = 0 M − 1 f ( x ) e − j 2 π u x / M , u = 0 , 1 , 2 , . . . , M − 1 F(u) = \sum_{n=0}^{M-1}f(x)e^{-j2\pi ux/M},u = 0,1,2,...,M - 1 F(u)=n=0M1f(x)ej2πux/M,u=0,1,2,...,M1
    ② 离散傅里叶反变换(IDFT):
    f ( x ) = 1 M ∑ m = 0 M − 1 F ( u ) e j 2 π u x / M , x = 0 , 1 , 2 , . . . , M − 1 f(x) = \frac{1}{M}\sum_{m=0}^{M-1}F(u)e^{j2\pi ux/M},x = 0,1,2,...,M-1 f(x)=M1m=0M1F(u)ej2πux/M,x=0,1,2,...,M1
  • 二维连续傅里叶变换及其反变换
    ① 傅里叶变换(FT):
    F ( μ , υ ) = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( t , z ) e − j 2 π ( μ t + υ z ) d t d z F(\mu,\upsilon) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(t,z)e^{-j2\pi (\mu t + \upsilon z)}dt dz F(μ,υ)=f(t,z)ej2π(μt+υz)dtdz
    ② 傅里叶反变换(IFT):
    f ( t , z ) = ∫ − ∞ ∞ ∫ − ∞ ∞ F ( μ , υ ) e j 2 π ( μ t + υ z ) d μ d υ f(t,z) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}F(\mu,\upsilon)e^{j2\pi (\mu t + \upsilon z)}d\mu d\upsilon f(t,z)=F(μ,υ)ej2π(μt+υz)dμdυ
  • 二维离散傅里叶变换及其反变换
    ① 离散傅里叶变换(DFT):
    F ( u , v ) = ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − 2 π ( u x / M + v y / N ) F(u,v) = \sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{-2\pi (ux / M + vy / N)} F(u,v)=x=0M1y=0N1f(x,y)e2π(ux/M+vy/N)
    ② 离散傅里叶反变换(IDFT):
    f ( x , y ) = 1 M N ∑ u = 0 M − 1 ∑ v = 0 N − 1 F ( u , v ) e 2 π ( u x / M + v y / N ) f(x,y) = \frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}F(u,v)e^{2\pi (ux / M + vy / N)} f(x,y)=MN1u=0M1v=0N1F(u,v)e2π(ux/M+vy/N)
  • 二维DFT使用极坐标表示
    F ( u , v ) = ∣ F ( u , v ) ∣ e j ϕ ( u , v ) F(u,v) = \vert F(u,v) \vert e^{j\phi(u,v)} F(u,v)=F(u,v)ejϕ(u,v)
    式中,幅度
    ∣ F ( u , v ) ∣ = [ R 2 ( u , v ) + F 2 ( u , v ) ] 1 / 2 \vert F(u,v) \vert = [R^2(u,v) + F^2(u,v)]^{1 / 2} F(u,v)=[R2(u,v)+F2(u,v)]1/2
    称为傅里叶谱(或频谱),而
    ϕ ( u , v ) = a r c t a n [ I ( u , v ) R ( u , v ) ] \phi(u,v) = arctan[\frac{I(u,v)}{R(u,v)}] ϕ(u,v)=arctan[R(u,v)I(u,v)]
    称为 相角
  • 功率谱
    p ( u , v ) = ∣ F ( u , v ) ∣ 2 = R 2 ( u , v ) + I 2 ( u , v ) p(u,v) = \vert F(u,v) \vert ^2 = R^2 (u,v) + I^2 (u,v) p(u,v)=F(u,v)2=R2(u,v)+I2(u,v)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ModelBulider

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值