第十章 循环神经网络RNN&LSTM

一、时间序列表示方法

在这里插入图片描述

在这里插入图片描述

  • 使用数值表示序列数据
    在这里插入图片描述

  • 时间序列数据表示
    在这里插入图片描述

  • 图像数据的序列表示
    在这里插入图片描述

  • 文字序列数据表示(词嵌入)
    在这里插入图片描述

  • one-hot由于 ① 稀疏;②高维度等特点,使得很少使用
    经常使用:① word2vec;② glove
    在这里插入图片描述

  • 序列数据中的Batch格式
    在这里插入图片描述

1.1 pytorch中表示时间序列

  • word2vec方式
    ① 首先要保存一个Embedding字典(一般在网络上下载)
    ② 对每个输入单词使用index索引在Embedding字典中找到一个向量表示
    在这里插入图片描述

  • GloVe
    是NLP领域已知的一个字典,可以直接得到单词对应的向量
    在这里插入图片描述


二、RNN原理

2.1 使用全连接的情感分析任务情景

在这里插入图片描述

  • 缺陷:
    ① 在长句输入模型中,参数量很大
    ② 文字前后没有联系
    在这里插入图片描述

2.2 优化模型

  • 第一步:共享权重(减少学习的权重参数量)
    在这里插入图片描述

  • 第二步:持续记忆(使序列前后存在联系)
    使用 h i h_i hi 单元充当 “语境记忆单元” ,当前序列计算均与前面的 “语境记忆单元” 有关,从而保证各序列之间存在联系
    在这里插入图片描述

2.3 RNN单元结构

  • 折叠的单元结构
    在这里插入图片描述

  • 展开的单元结构
    在这里插入图片描述

  • RNN的公式表示
    在这里插入图片描述

在这里插入图片描述

2.4 RNN模型实现

在这里插入图片描述

  • pytorch实现
    在这里插入图片描述

① rnn = nn.RNN(input_size,hidden_size,num_layer)
a) input_size:输入序列值的向量维度 feature_len
b) hidden_size:隐藏(语境记忆)单元的维度 hidden_len
c) num_layer:设置RNN上下连接的层数,默认为1
在这里插入图片描述

② out, h t h_t ht = rnn(x,h0)
a) x:表示输入序列数据 [seq len,b,word vec],RNN时间序列步个数等于seq len
b) h0:表示起始记忆单元 h i h_i hi的初始值 [num layer,b,h dim]
c) h t h_t ht:表示最后一个序列步(t)上每一层的 h t h_t ht 的表示
d) out:表示最后一层中每个时间序列步计算得到的 h t h_t ht的表示
在这里插入图片描述

  • 单层RNN实现
    在这里插入图片描述

  • 多层RNN
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • pytorch的另一种实现方式
    构建单个时间步的结构,手动的连接各时间步
    在这里插入图片描述

在这里插入图片描述

① 一层RNN
在这里插入图片描述

② 二层RNN
在这里插入图片描述

三、时间序列预测实战

预测正弦波的下一输出范围
在这里插入图片描述

  • 创建用于训练的样本数据
    在这里插入图片描述

  • 网络结构
    在这里插入图片描述

  • 训练过程
    在这里插入图片描述

  • 预测过程
    在这里插入图片描述


四、梯度弥散与梯度爆炸

在这里插入图片描述

4.1 梯度爆炸

由于反向传播式中包含, W R k W^k_R WRk项。
1)当 W R W_R WR大于1时,梯度将指数级增长。loss 会突然变大
2)当 W R W_R WR小于1时,梯度将趋近于0。loss 会几乎不变
在这里插入图片描述

  • 解决梯度爆炸的方法
    在这里插入图片描述

  • pytorch实现解决梯度爆炸的方法
    使用 torch.nn.utils.clip_grad_norm_(param,threshold)
    ① param:指定要限制梯度下降的参数
    ② threshold:指定梯度下降值的阈值
    在这里插入图片描述

4.2 梯度弥散

在这里插入图片描述

  • 使用LSTM解决梯度弥散问题
    在这里插入图片描述

五、LSTM

① 标准的RNN结构中,使用的 h i h_i hi 是短时记忆(只能较好的接收相邻近的时间步输出值),对长时间序列信息不能很好的获知
LSTM实现了长短时记忆功能
在这里插入图片描述

5.1 LSTM结构分析

  • 标准RNN的结构图
    在这里插入图片描述

  • LSTM的RNN单元结构
    主要原理是:设计了三个门控开关(遗忘门、输入门、输出门)
    ① 遗忘门控制传入的前面所有时间步的记忆信息
    ② 输入门控制结合前一时间步输出与当前时间步的输入的数据
    ③ 输出门控制当前时间步的输出数据
    门控开关均由sigmoid函数实现
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • 抽象LSTM的结构
    在这里插入图片描述

在这里插入图片描述

5.2 LSTM解决梯度弥散

将标准RNN中 W R W_R WR指数项变为,多个 W W W相加,一定程度上减少了梯度弥散
在这里插入图片描述

5.3 LSTM的pytorch实现

① lstm_rnn = nn.LSTM(input_size,hidden_size,num_layer)
a) input_size:输入序列值的向量维度 feature_len
b) hidden_size:隐藏(语境记忆)单元的维度 hidden_len (此处包含了LSTM中的 C C C h h h)
c) num_layers:设置RNN上下连接的层数,默认为1
在这里插入图片描述

② out, h t h_t ht, c t c_t ct = lstm_rnn(x,h0)
a) x:表示输入序列数据 [seq len,b,word vec],RNN时间序列步个数等于seq len
b) h0:表示起始记忆单元 h i h_i hi的初始值 [num layer,b,h dim]
c) h t h_t ht:表示最后一个序列步(t)上每一层的 h t h_t ht 的表示
d) c t c_t ct:表示最后一个序列步(t)上每一层的 c t c_t ct 的表示
d) out:表示最后一层中每个时间序列步计算得到的 h t h_t ht的表示
在这里插入图片描述

注:传入的是初始状态的 c t 0 c_{t0} ct0 h t 0 h_{t0} ht0

  • pytorch实现
    在这里插入图片描述

  • pytorch对LSTM的另一种实现
    在这里插入图片描述

在这里插入图片描述

① 一层LSTM的实现
在这里插入图片描述

② 二层LSTM的实现
在这里插入图片描述


六、情感分类实战

在这里插入图片描述

在这里插入图片描述

  • 使用goolge的实验平台
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

注:① 若RNN中使用双向的LSTM,则输入与输出的 h h h c c c 中num_layer会乘以2
② output中hid_dim会乘以2

  • 初始化词嵌入字典
    在这里插入图片描述

  • 训练过程
    在这里插入图片描述

  • 测试过程
    在这里插入图片描述

  • 16
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ModelBulider

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值